材料工程与机械制造

基于能量理论的航空整体结构件滚压变形校正载荷预测方法

  • 路来骁 ,
  • 孙杰 ,
  • 韩雄 ,
  • 熊青春 ,
  • 宋戈
展开
  • 1. 山东大学 机械工程学院 高效洁净机械制造教育部重点实验室, 济南 250061;
    2. 中航工业成都飞机工业(集团)有限责任公司, 成都 610092

收稿日期: 2017-04-14

  修回日期: 2017-07-31

  网络出版日期: 2017-07-31

基金资助

国家自然科学基金(51275277)

Load prediction method of rolling distortion correction for monolithic aeronautical components based on energy theory

  • LU Laixiao ,
  • SUN Jie ,
  • HAN Xiong ,
  • XIONG Qingchun ,
  • SONG Ge
Expand
  • 1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China;
    2. AVIC Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610092, China

Received date: 2017-04-14

  Revised date: 2017-07-31

  Online published: 2017-07-31

Supported by

National Natural Science Foundation of China (51275277)

摘要

航空整体结构件在数控加工过程中,由于多种因素耦合作用影响,普遍存在不同程度、不同形式的加工变形问题。滚压校正是实现大长宽比薄壁结构件变形校正的有效手段,且在获得工件尺寸精度的同时,引入压应力,提高工件使用寿命。目前,滚压变形校正多依赖于工人经验和试错法,缺乏校正载荷的准确预测方法,质量稳定性差。为此,基于能量理论,在分析梁类零件校正过程能量平衡要求的基础上,结合等效截面法和弯曲应变能法,分别对变形工件的弯曲应变能和滚压做功进行计算,进而建立工件变形量与校正载荷间的数学模型,实现滚压变形校正载荷预测。进一步,为实现校正载荷准确性的快速评价,采用直接应力法建立了加工变形-滚压校正协同仿真环境,实现了梁类航空整体结构件滚压变形校正的快速等效模拟。最后,以三隔框结构件为例进行了有限元仿真和试验验证,直接应力法仿真分析获得的变形消除率为94.5%,试验获得的单次滚压变形消除率达到82.0%,滚压区域表面由铣削拉应力转变为滚压压应力,校正效果符合预期。

本文引用格式

路来骁 , 孙杰 , 韩雄 , 熊青春 , 宋戈 . 基于能量理论的航空整体结构件滚压变形校正载荷预测方法[J]. 航空学报, 2017 , 38(12) : 421326 -421326 . DOI: 10.7527/S1000-6893.2017.421326

Abstract

Monolithic aeronautical components have varying degrees and forms of machining deformation due to the coupling effect of various factors in Numerical Control (NC) machining. Rolling operation is an effective means to correct distortion of large aspect ratio thin-walled structures, and compressive stress is introduced to improve the service life and obtain the dimensional accuracy of the workpiece. At present, rolling correction depends mainly on the trial and error method based on workers' experience, and lack of accurate prediction method for the corrected load leads to poor quality stability. In this paper, the requirement for energy balance of a beam structure is analyzed. The equivalent section method and the bending strain energy method are used to calculate the bending strain energy and the rolling introduced energy, respectively. Then, a mathematical model for workpiece distortion and correction load is established to predict the correction load. To achieve rapid evaluation of accuracy of the correction load, the collaborative simulation environment of machining distortion-rolling correction is established by the direct stress method to realize fast-equivalent simulation of deformation of monolithic aeronautical components.The three-frame integral structure is used as an example to verify that the distortion elimination rate obtained by the simulation with the direct stress method is 94.5%. The experimental results show that the distortion elimination rate of single rolling is 82.0%, and the surface of the rolling area is changed from milling tensile stress to rolling compressive stress. The correction effect is in line with expectations.

参考文献

[1] 孙杰, 李剑峰, 王中秋, 等. 航空整体结构件加工变形控制与校正关键技术[J]. 航空制造技术, 2009(23):62-66. SUN J, LI J F, WANG Z Q, et al. Key technology on processing deformation control and correction of aviation overall parts[J]. Aeronautical Manufacturing Technology, 2009(23):62-66(in Chinese).[2] MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining-induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4):597-608.[3] YANG Y, LI M, LI K R. Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9-12):1803-1811.[4] 杨吟飞, 张峥, 李亮, 等. 7085铝合金残余应力及加工变形的数值仿真与试验[J]. 航空学报, 2014, 35(2):574-581. YANG Y F, ZHANG Z, LI L, et al. Numerical simulation and test of bulk residual stress and machining distortion in aluminum alloy 7085[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):574-581(in Chinese).[5] MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining-induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4):597-608.[6] MA Y, FENG P, ZHANG J, et al. Prediction of surface residual stress after end milling based on cutting force and temperature[J]. Journal of Materials Processing Technology, 2016, 235:41-48.[7] HUANG X, SUN J, LI J. Effect ofinitial residual stress and machining-induced residual stress on the deformation of aluminium alloy plate[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2015, 61(2):131-137.[8] 张峥. 飞机弱刚性铝合金结构件的残余应力和加工变形控制技术研究[D]. 南京:南京航空航天大学, 2015. ZHANG Z. Research on residual stress and machining distortion of aeronautic weak rigidity in aluminum structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).[9] 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 49(9):201-208. HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering, 2017, 49(9):201-208(in Chinese).[10] CHANTZIS D, VAN-DER-VEEN S, ZETTLER J, et al. An industrial workflow to minimise part distortion for machining of large monolithic components in aerospace industry[J]. Procedia CIRP, 2013, 8:281-286.[11] LI B, JIANG X, YANG J, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216:223-233.[12] 刘长青. 基于动态加工特征的航空结构件智能加工关键技术[D]. 南京:南京航空航天大学, 2014. LIU C Q. The Key technologies of intelligent machining based on dynamic machining feature for aerospace structural parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).[13] 孙杰. 航空整体结构件数控加工变形校正理论和方法研究[D]. 杭州:浙江大学, 2003. SUN J. Study oncorrection theory and method for distorted aeronautical monolithic component due to NC machining[D]. Hangzhou:Zhejiang University, 2003(in Chinese).[14] 张洪伟, 张以都, 吴琼, 等. 基于有限元仿真的航空整体结构件变形校正[J]. 北京航空航天大学学报, 2007, 33(10):1251-1255. ZHANG H W, ZHANG Y D, WU Q, et al. Straightening technique for distorted aeronautical monolithic component based on finite element numerical simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1251-1255(in Chinese).[15] 张洪伟, 张以都, 吴琼, 等. 航空整体结构件加工变形校正技术研究[J]. 兵工学报, 2010, 31(8):1072-1077. ZHANG H W, ZHANG Y D, WU Q, et al. Research on deformation straightening for aeronautical monolithic components[J]. Acta Armamentarii, 2010, 31(8):1072-1077(in Chinese).[16] PERENDA J, TRAJKOVSKI J, ŽEROVNIK A, et al. Residual stresses after deep rolling of a torsion bar made from high strength steel[J]. Journal of Materials Processing Technology, 2015, 218:89-98.[17] LIU Y, ZHAO X, WANG D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation[J]. Materials Science and Engineering:A, 2014, 600:21-31.[18] DING H, WANG Y, CAI L. Laser shock forming of aluminum sheet:Finite element analysis and experimental study[J]. Applied Surface Science, 2010, 256(6):1703-1707.[19] 王中秋. 航空整体结构件加工变形滚压校正理论及方法研究[D]. 济南:山东大学, 2009. WANG Z Q. Study on theory and approach for correcting aerospace monolithic component due to machining distortion using rolling method[D]. Jinan:Shandong University, 2009(in Chinese).[20] LU L, SUN J. Investigation on distortion mechanism and correcting load calculation method for aluminum beam structure by bilateral rolling process[J]. Procedia CIRP, 2016, 57:781-786.[21] LU L, SUN J, LI Y, et al. A theoretical model for load prediction in rolling correction process of thin-walled aeronautic parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12):4121-4131.[22] S.铁摩辛柯, J.盖尔. 材料力学[M]. 胡人礼, 译. 北京:科学出版社, 1978. TIMOSHENKO S, GERE J. Mechanics of materials[M]. HU R L, translated. Beijing:Science Press Ltd., 1978(in Chinese).[23] 刘鸿文. 材料力学Ⅰ[M].5版. 北京:高等教育出版社, 2010. LIU H W. Mechanics of materials Ⅰ[M]. 5th ed. Beijing:China Higher Education Press, 2010(in Chinese).[24] 张炜, 刘立彬, 夏明莉, 等. 机翼缘条喷丸强化变形模拟与参数优化[J]. 航空制造技术, 2016(17):28-32. ZHANG W, LIU L B, XIA M L, et al. Simulation and optimization of shot peening deformation for aircraft wing flange[J]. Aeronautical Manufacturing Technology, 2016(17):28-32(in Chinese).
文章导航

/