Monolithic aeronautical components have varying degrees and forms of machining deformation due to the coupling effect of various factors in Numerical Control (NC) machining. Rolling operation is an effective means to correct distortion of large aspect ratio thin-walled structures, and compressive stress is introduced to improve the service life and obtain the dimensional accuracy of the workpiece. At present, rolling correction depends mainly on the trial and error method based on workers' experience, and lack of accurate prediction method for the corrected load leads to poor quality stability. In this paper, the requirement for energy balance of a beam structure is analyzed. The equivalent section method and the bending strain energy method are used to calculate the bending strain energy and the rolling introduced energy, respectively. Then, a mathematical model for workpiece distortion and correction load is established to predict the correction load. To achieve rapid evaluation of accuracy of the correction load, the collaborative simulation environment of machining distortion-rolling correction is established by the direct stress method to realize fast-equivalent simulation of deformation of monolithic aeronautical components.The three-frame integral structure is used as an example to verify that the distortion elimination rate obtained by the simulation with the direct stress method is 94.5%. The experimental results show that the distortion elimination rate of single rolling is 82.0%, and the surface of the rolling area is changed from milling tensile stress to rolling compressive stress. The correction effect is in line with expectations.
[1] 孙杰, 李剑峰, 王中秋, 等. 航空整体结构件加工变形控制与校正关键技术[J]. 航空制造技术, 2009(23):62-66. SUN J, LI J F, WANG Z Q, et al. Key technology on processing deformation control and correction of aviation overall parts[J]. Aeronautical Manufacturing Technology, 2009(23):62-66(in Chinese).[2] MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining-induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4):597-608.[3] YANG Y, LI M, LI K R. Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9-12):1803-1811.[4] 杨吟飞, 张峥, 李亮, 等. 7085铝合金残余应力及加工变形的数值仿真与试验[J]. 航空学报, 2014, 35(2):574-581. YANG Y F, ZHANG Z, LI L, et al. Numerical simulation and test of bulk residual stress and machining distortion in aluminum alloy 7085[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):574-581(in Chinese).[5] MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining-induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4):597-608.[6] MA Y, FENG P, ZHANG J, et al. Prediction of surface residual stress after end milling based on cutting force and temperature[J]. Journal of Materials Processing Technology, 2016, 235:41-48.[7] HUANG X, SUN J, LI J. Effect ofinitial residual stress and machining-induced residual stress on the deformation of aluminium alloy plate[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2015, 61(2):131-137.[8] 张峥. 飞机弱刚性铝合金结构件的残余应力和加工变形控制技术研究[D]. 南京:南京航空航天大学, 2015. ZHANG Z. Research on residual stress and machining distortion of aeronautic weak rigidity in aluminum structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).[9] 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 49(9):201-208. HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering, 2017, 49(9):201-208(in Chinese).[10] CHANTZIS D, VAN-DER-VEEN S, ZETTLER J, et al. An industrial workflow to minimise part distortion for machining of large monolithic components in aerospace industry[J]. Procedia CIRP, 2013, 8:281-286.[11] LI B, JIANG X, YANG J, et al. Effects of depth of cut on the redistribution of residual stress and distortion during the milling of thin-walled part[J]. Journal of Materials Processing Technology, 2015, 216:223-233.[12] 刘长青. 基于动态加工特征的航空结构件智能加工关键技术[D]. 南京:南京航空航天大学, 2014. LIU C Q. The Key technologies of intelligent machining based on dynamic machining feature for aerospace structural parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).[13] 孙杰. 航空整体结构件数控加工变形校正理论和方法研究[D]. 杭州:浙江大学, 2003. SUN J. Study oncorrection theory and method for distorted aeronautical monolithic component due to NC machining[D]. Hangzhou:Zhejiang University, 2003(in Chinese).[14] 张洪伟, 张以都, 吴琼, 等. 基于有限元仿真的航空整体结构件变形校正[J]. 北京航空航天大学学报, 2007, 33(10):1251-1255. ZHANG H W, ZHANG Y D, WU Q, et al. Straightening technique for distorted aeronautical monolithic component based on finite element numerical simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10):1251-1255(in Chinese).[15] 张洪伟, 张以都, 吴琼, 等. 航空整体结构件加工变形校正技术研究[J]. 兵工学报, 2010, 31(8):1072-1077. ZHANG H W, ZHANG Y D, WU Q, et al. Research on deformation straightening for aeronautical monolithic components[J]. Acta Armamentarii, 2010, 31(8):1072-1077(in Chinese).[16] PERENDA J, TRAJKOVSKI J, ŽEROVNIK A, et al. Residual stresses after deep rolling of a torsion bar made from high strength steel[J]. Journal of Materials Processing Technology, 2015, 218:89-98.[17] LIU Y, ZHAO X, WANG D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation[J]. Materials Science and Engineering:A, 2014, 600:21-31.[18] DING H, WANG Y, CAI L. Laser shock forming of aluminum sheet:Finite element analysis and experimental study[J]. Applied Surface Science, 2010, 256(6):1703-1707.[19] 王中秋. 航空整体结构件加工变形滚压校正理论及方法研究[D]. 济南:山东大学, 2009. WANG Z Q. Study on theory and approach for correcting aerospace monolithic component due to machining distortion using rolling method[D]. Jinan:Shandong University, 2009(in Chinese).[20] LU L, SUN J. Investigation on distortion mechanism and correcting load calculation method for aluminum beam structure by bilateral rolling process[J]. Procedia CIRP, 2016, 57:781-786.[21] LU L, SUN J, LI Y, et al. A theoretical model for load prediction in rolling correction process of thin-walled aeronautic parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(9-12):4121-4131.[22] S.铁摩辛柯, J.盖尔. 材料力学[M]. 胡人礼, 译. 北京:科学出版社, 1978. TIMOSHENKO S, GERE J. Mechanics of materials[M]. HU R L, translated. Beijing:Science Press Ltd., 1978(in Chinese).[23] 刘鸿文. 材料力学Ⅰ[M].5版. 北京:高等教育出版社, 2010. LIU H W. Mechanics of materials Ⅰ[M]. 5th ed. Beijing:China Higher Education Press, 2010(in Chinese).[24] 张炜, 刘立彬, 夏明莉, 等. 机翼缘条喷丸强化变形模拟与参数优化[J]. 航空制造技术, 2016(17):28-32. ZHANG W, LIU L B, XIA M L, et al. Simulation and optimization of shot peening deformation for aircraft wing flange[J]. Aeronautical Manufacturing Technology, 2016(17):28-32(in Chinese).