电子电气工程与控制

基于满意博弈论的复杂低空飞行冲突解脱方法

  • 管祥民 ,
  • 吕人力
展开
  • 中国民航管理干部学院, 北京 100102

收稿日期: 2017-05-25

  修回日期: 2017-06-27

  网络出版日期: 2017-06-27

基金资助

国家自然科学基金民航联合基金(U1433203,U1533119)

Aircraft conflict resolution method based on satisfying game theory

  • GUAN Xiangmin ,
  • LYU Renli
Expand
  • Civil Aviation Management Institute of China, Beijing 100102, China

Received date: 2017-05-25

  Revised date: 2017-06-27

  Online published: 2017-06-27

Supported by

The Civil Aviation Joint Funds of the National Natural Science Foundation of China (U1433203,U1533119)

摘要

复杂低空空域环境下多飞行器冲突解脱方法可以有效地提供冲突解脱策略,实时规划飞行器四维航迹,避免飞行器之间发生危险接近事故或者碰撞,从而保障空域运行安全。然而,随着飞行器数目的不断增长,冲突解脱面临"维数灾难",导致问题具有高维度、强耦合等难点。因此,传统的优化方案难以得到令人满意的方案。为了提高冲突解脱效率,保障运行安全,基于满意博弈论方法,考虑低空飞行器运动特点,构建冲突解脱模型,设计冲突解脱方法。飞行器主要采用改变航向角的策略。通过基于条件概率的方法来建立"社会关系",即当前飞机所做的决策对其他飞机产生的影响。每个飞行器在决策时,都会受到优先级比自己高的决策者的影响。基于满意博弈论的冲突解脱方法不仅可以有效地解决当前飞行器的冲突问题,而且兼顾探测范围内的其他飞行器,避免当前解脱策略导致与其他飞行器冲突,实现整体最优化。最后,通过在极端典型飞行冲突场景中实验验证表明,基于满意博弈论的冲突解脱方法可以实时高效实现大规模飞行器的冲突解脱,保障飞行安全且控制经济成本。

本文引用格式

管祥民 , 吕人力 . 基于满意博弈论的复杂低空飞行冲突解脱方法[J]. 航空学报, 2017 , 38(S1) : 721475 -721475 . DOI: 10.7527/S1000-6893.2017.721475

Abstract

Multi-aircraft conflict resolution in complex low altitude airspace can effectively provide resolution strategy and 4 dimensional trajectory for the aircraft in real time to avoid conflict, collision and ensure airspace operation safety. However, as the number of aircraft increases, conflict resolution faces the curse of dimensionality to cause difficulties, such as high dimensionality and tight coupling, and is difficult to be solved by traditional methods. To improve the optimization efficiency and keep operation safety, a conflict resolution mathematical model and a new method based on the satisfying game theory are proposed with consideration of the characteristics of the aircraft in low altitude airspace. The "social relationship" is established based on conditional probability, that is, the decision of each aircraft will cause influence to other aircraft. Each aircraft will consider the aircraft with higher priority when it makes decision. The method based on the satisfying game theory, can not only solve the current conflict, but also consider to avoid the new conflict among aircraft in the detection range under the resolution strategy. Hence, the overall benefit maximization can be realized. Finally, the simulation results using the extreme scenario demonstrate that the proposed approach can solve the conflict of large-scale aircraft, keep operation safety and control the cost.

参考文献

[1] TRELEAVEN K, MAO Z H. Conflict resolution and traffic complexity of multiple intersecting flows of aircraft[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(4): 633-643.
[2] 李伟, 管祥民. 航空运输飞行流量优化调度仿真研究[J]. 计算机仿真, 2015, 32(11): 24-31. LI W, GUAN X M. Research on the air traffic flow management based on simulation method[J]. Computer Simulation, 2015, 32(11): 24-31 (in Chinese).
[3] DURAND N, ALLIOT J M, CHANSOU O. An optimizing conflict solver for ATC[J]. Journal of Air Traffic Control, 1995,3: 1-26.
[4] DURAND N, ALLIOT J M, MEDIONI F. Neural nets trained by genetic algorithms for collision avoidance[J]. Applied Artificial Intelligence, 2000, 13(3): 205-213.
[5] 刘星, 胡明华, 董襄宁. 遗传算法在飞行冲突探测解脱中的应用[J]. 南京航空航天大学学报, 2002, 34(1): 35-41. LIU X, HU M H, DONG X N. Application of genetic algorithms for solving flight conflicts[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(1):35-41 (in Chinese).
[6] 靳学梅. 自由飞行空域中多机冲突探测与解脱技术研究[D]. 南京: 南京航空航天大学, 2004. JIN X M, Theresearch of technologies of the conflict detection and resolution among multi-aircraft in free flight airspace[D]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2004 (in Chinese).
[7] 杨尚文, 戴福青. 基于一种免疫遗传算法的自由飞行冲突解脱[J]. 航空计算技术, 2007, 37(1): 41-43. YANG S W, DAI F Q,Conflict resolution in free flight based on an immune ggenetic algorithm[J]. Aeronautical Computing Technique, 2007, 37(1): 41-43 (in Chinese).
[8] 王世锦, 隋东. 低空空域飞行冲突风险研究[J]. 西南交通大学学报, 2010, 45(1): 116-123. WANG S J, SUI D. Risk analysis of flight conflict in low altitude airspace[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 116-123 (in Chinese).
[9] 郭茜, 聂润兔. 改进人工势场法在解决飞行冲突问题中的应用[J]. 交通与计算机, 2008, 26(5): 718-722. GUO Q, NIE R T. Application of improved artificial field method in aircraft conflict resolution[J]. Journal of Transport Information and Safety, 2008, 26(5): 718-722(in Chinese).
[10] ZHANG X J, GUAN X M, ZHU Y B, et al. Strategic flight assignment approach based on multi-objective parallel evolution algorithm with dynamic migration interval[J]. Chinese Journal of Aeronautics, 2015, 28(2): 556-563.
[11] 华烨, 胡访宇, 曹菁华. 一种基于相对关系亲密度的局部社团发现算法[J]. 计算机仿真, 2014, 31(11): 278-281. HUA Y, HU F Y, CAO J H. A local community detection algorithm based on relative intimacy[J]. Computer Simulation, 2014, 31(11): 278-281.
[12] JOHNSON F R, HILL J C, ARCHIBALD J K. A satisficing approach to free flight[C]//Proceedings of the IEEE Networking, Sensing and Control. Piscataway, NJ: IEEE Press, 2005: 123-128.
[13] MAO Z, FERON E, BILIMORIA K. Stability and performance of intersecting aircraft flows under decentralized conflict avoidance rules[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2: 101-109.
[14] SISLAK D, VOLF P, PECHOUCEK M, et al. Automated conflict resolution utilizing probability collectives optimizer[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 2011, 41(3): 365-375.
[15] ALLIOT J M, GRUBER H, JOLY G, et al. Genetic algorithms for solving air traffic control conflicts[C]//The Ninth Conference on Artificial Intelligence for Applications. 1993.
[16] DURAND N, ALLIOT J M, NOAILLES J. Automatic aircraft conflict resolution using genetic algorithms[C]//Proceedings of the Symposium on Applied Computing, 1996.
[17] MONDOLONI S, CONWAY S. An airborne conflict resolution approach using a genetic algorithm: Tech. Rep. NASA-AIAA-2001-4054[R].Washington, D. C.: NASA, 2001.
[18] VIVONA R, KARR D, ROSCOE D. Pattern based genetic algorithm for airborne conflict resolution[C]//Presented at the AIAA Guidance, Navigation, Control Conference. Reston,VA: AIAA, 2006.
[19] FRAZZOLI E, MAO Z, OH J H, et al. Resolution of conflicts involving many aircraft via semi-definite programming[J].Journal of Guidance, Control, and Dynamics, 1999, 24(1): 79-86.
[20] HART P, NILSSON N, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics,1968, 4(2): 100-107.

文章导航

/