收稿日期: 2016-12-05
修回日期: 2017-05-31
网络出版日期: 2017-05-31
基金资助
国家自然科学基金(51405123);中央高校基本科研业务费专项资金(2017MS077)
Lightweight design method for continuum structure under vibration using multiphase materials
Received date: 2016-12-05
Revised date: 2017-05-31
Online published: 2017-05-31
Supported by
National Natural Science Foundation of China (51405123);Fundamental Research Funds for the Central University (2017MS077)
为了实现基于多相材料的结构轻量化设计,遵循独立连续映射法,提出了以结构总重最小化为目标和给定特征值为约束的拓扑优化模型。方法采用2类独立拓扑变量实现了单元刚度矩阵、质量矩阵和重量插值。推导了固有特征值和总重量的敏度表达式,通过1阶和2阶泰勒展开得到其近似表达式。对约束函数一次项过滤转换为偏微分方程的求解,消除了棋盘格现象和网格依赖性等数值不稳定性。通过二维数值算例验证了提出方法的可行性和优越性。结果表明,与单相组分材料拓扑优化结构相比,多相材料拓扑优化结构具有更轻的重量。通过附加相邻频率间隔约束或增加高阶频率约束,避免了模态交换现象。
龙凯 , 谷先广 , 王选 . 基于多相材料的连续体结构动态轻量化设计方法[J]. 航空学报, 2017 , 38(10) : 221022 -221022 . DOI: 10.7527/S1000-6893.2017.221022
To achieve light design of continuum structure containing multiphase materials,a topological optimization model for weight minimization with the given eigenvalue constraint is proposed using the independent continuous mapping method.Two sets of independent topological variables are employed to interpolate the elemental stiffness matrix,the mass matrix and weight.The sensitivity expressions for the eigenvalue and total weight are derived.The approximations of the eigenvalue and total weight can be obtained via the first-order and second-order Taylor expansion.The filtering technique for the first term of the constraint function is adopted as a solution to the partial differential equation.The numerical instabilities including checkerboard patterns and mesh dependence are removed.The feasibility and superiority of the proposed method are validated by two-dimensional numerical examples.The results show that the weight of the optimal structure constructed by multiphase materials is lighter than that composed of constituent phase.The mode switch can be prevented by imposing the constraint on the gap of the adjacent frequency or additional high order frequency constraint.
[1] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.
[2] ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures:A review[J]. Applied Mechanics Reviews, 2001, 54(4):331-390.
[3] ROZVANY G I N. A critical review of established methods of structural topology optimization[J]. Structural and Multidisciplinary Optimization, 2009, 37(3):217-237.
[4] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6):1031-1055.
[5] DEATON J D, GRANDHI R V. A survey of structural and multidisciplinary continuum topology optimization:Post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1):1-38.
[6] XIA L, XIA Q, HUANG X, et al. Bi-directional evolutionary structural optimization on advanced structures and materials:A comprehensive review[J]. Archives of Computational Methods in Engineering, DOI 10.1007/s11831-016-9203-2.
[7] DIAZ A R, KIKUCHI N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7):1487-1502.
[8] MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4):259-280.
[9] XIE Y M, STEVEN G P. Evolutionary structural optimization for dynamic problems[J]. Computers & Structures, 1996, 58(6):1067-1073.
[10] DU J, OLHOFF N. Minimization of sound radiation from vibrating bi-material structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5):305-321.
[11] DU J, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2):91-110.
[12] DU J, OLHOFF N. Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium[J]. Structural and Multidisciplinary Optimization, 2010, 42(1):43-54.
[13] JOG C S. Topology design of structures subjected to periodic loading[J]. Journal of Sound and Vibration, 2002, 253(3):687-709.
[14] KANG B S, PARK G J, ARORA J S. A review of optimization of structures subjected to transient loads[J]. Structural and Multidisciplinary Optimization, 2006, 31(2):81-95.
[15] KANG Z, ZHANG X, JIANG S, et al. On topology optimization of damping layer in shell structures under harmonic excitations[J]. Structural and Multidisciplinary Optimization, 2012, 46(1):51-67.
[16] LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural and Multidisciplinary Optimization, 2015, 51(6):1321-1333.
[17] NIU B, OLHOFF N, LUND E, et al. Discrete material optimization of vibrating laminated composite plates for minimum sound radiation[J]. International Journal of Solids and Structures, 2010, 47(16):2097-2114.
[18] NIELS O, DU J. Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency[J]. Structural and Multidisciplinary Optimization, 2016, 54(5):1113-1141.
[19] ZHAO J, WANG C. Dynamic response topology optimization in the time domain using model reduction method[J]. Structural and Multidisciplinary Optimization, 2016, 53(1):101-114.
[20] ZARGHAM S, WARD T H, RAMLI R, et al. Topology optimization:A review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53(6):1157-1177.
[21] THOMSEN J. Topology optimization of structures composed of one or two materials[J]. Journal of Structural Optimization, 1992, 5(1-2):108-115.
[22] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
[23] GIBIANSKY L V, SIGMUND O. Multiphase composites with extremal bulk modulus[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(3):461-498.
[24] WANG M Y, WANG X. "Color" level sets:A multi-phase method for structural topology optimization with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(6):469-496.
[25] ZHOU S W, WANG M Y. Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition[J]. Structural and Multidisciplinary Optimization, 2007, 33(2):89-111.
[26] HUANG X, XIE Y M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials[J]. Computational Mechanics, 2009, 43(3):393-401.
[27] YIN L, ANANTHASURESH G K. Topology of compliant mechanisms with multiple material using a peak function material interpolation scheme[J]. Structural and Multidisciplinary Optimization, 2001, 23(1):49-62.
[28] GAO T, ZHANG W. A mass constraint formulation for structural topology optimization with multiphase materials[J]. International Journal for Numerical Methods in Engineering, 2011, 88(8):774-796.
[29] GAO T, XU P, ZHANG W. Topology optimization of thermo-elastic structures with multiple materials under mass constraint[J]. Computers and Structures, 2016, 173:150-160.
[30] TAKAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multimaterial topology optimization problems:A 115-line MATLAB implementation[J]. Structural and Multidisciplinary Optimization, 2014, 49(4):621-642.
[31] ZUO W, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, DOI:10.1007/s00158-016-1513-3.
[32] 隋允康. 建模·变换·优化——结构综合方法新进展[M]. 大连:大连理工大学出版社,1996:87-195. SUI Y K. Modelling, transformation and optimization-New developments of structural synthesis method[M]. Dalian:Dalian University of Technology Press, 1996:87-195(in Chinese).
[33] 隋允康, 叶红玲, 杜家政. 结构拓扑优化的发展及其模型转化为独立层次的迫切性[J]. 工程力学, 2005, 22(增):107-118. SUI Y K, YE H L, DU J Z. Development of structural topological optimization and imminency of its model transformation into independent level[J]. Engineering Mechanics, 2005, 22(Sup):107-118(in Chinese).
[34] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M]. 北京:科学出版社, 2013:27-222. SUI Y J, YE H L. Continuum topology optimization methods ICM[M]. Beijing:Science Press, 2013:27-222(in Chinese).
[35] PEDERSEN N L. Maximization of eigenvalues using topology optimization[J]. Structural and Multidisciplinary Optimization, 2000, 20(1):2-11.
[36] HUANG X, ZUO Z H, XIE Y M. Evolutionary topological optimization of vibrating continuum structures for natural frequencies[J]. Computer & Structures, 2010, 88(5):357-364.
[37] 彭细荣, 隋允康. 有频率禁区的连续体结构拓扑优化[J]. 固体力学学报, 2007, 28(2):145-150. PENG X R, SUI Y K. Topological optimization of the continuum structure with non-frequency-band constraints[J]. Acta Mechanica Solida Sinica, 2007, 28(2):145-150(in Chinese).
[38] 彭细荣, 隋允康. 用ICM法拓扑优化静位移及频率约束下连续体结构[J]. 计算力学学报, 2006, 23(4):391-396. PENG X R, SUI Y K. Topological optimization of continuum structure with static displacement and frequency constraints by ICM method[J]. Chinese Journal of Computational Mechanics, 2006, 23(4):391-396(in Chinese).
[39] SUI Y, PENG X. The ICM method with objective function transformed by variable discrete condition for continuum structure[J]. Acta Mechanica Sinica, 2006, 22(1):68-75.
[40] YE H L, WANG W W, CHEN N, et al. Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function[J]. Acta Mechanica Sinica, 2016, 32(4):649-658.
[41] DIAZ A, SIGMUND O. Checkerboard patterns in layout optimization[J]. Structural Optimization, 1995, 10(1):40-45.
[42] SIGMUND O, PETERSSON J. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16(1):68-75.
[43] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for numerical Methods in Engineering, 2011, 86(6):765-781.
/
〈 | 〉 |