收稿日期: 2017-02-06
修回日期: 2017-04-26
网络出版日期: 2017-04-26
基金资助
国家自然科学基金(11472295)
Preliminary test model design of fluid-thermal-structural interaction problems
Received date: 2017-02-06
Revised date: 2017-04-26
Online published: 2017-04-26
Supported by
National Natural Science Foundation of China (11472295)
以多渠道、多机制交叉耦合为热防护结构特点的新一代高超声速飞行器必须采用气动力/热与结构多场耦合计算方法进行研究。目前,国外已建立较完善的耦合分析系统并用于飞行器研制,国内的中国空气动力研究与发展中心(CARDC)也已自主研发了热环境/热响应耦合计算平台(FL-CAPTER)。为验证多场耦合计算平台所用方法的有效性和计算结果的准确性,设计并开展气动力/热与结构耦合的地面试验具有十分重要的意义。本文结合气动力/热与结构多场耦合试验设计需求,以现有材料和设备能力为依托,开展了试验风洞选取、模型尺寸估算、模型材料选择、模型气动设计与模型结构设计工作。初步研究表明,模型支撑结构附近迎风面局部高温热膨胀将有利于模型前体结构产生可观的整体变形量。本文以此设计了带压缩拐角的二级压缩面结构模型,通过短时间不锈钢模型验证试验和计算对比分析初步验证了模型设计的可行性,并以此为基础预测了高温合金模型的试验结果。为下一步开展高温合金长时间风洞试验奠定了技术基础。
刘磊 , 代光月 , 曾磊 , 王振锋 , 桂业伟 . 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017 , 38(11) : 221165 -221165 . DOI: 10.7527/S1000-6893.2017.221165
The thermal protection system, which relates to the safety of hypersonic vehicle, is one of the key techniques for the design and manufacture of hypersonic vehicles. The new thermal protection mode based on multi-channel coupling is becoming the main thermal protection mode for new generation hypersonic vehicles. The computation strategy and method for fluid-thermal-structural coupling problem must be considered under this new mode. At present, a mature coupling analysis system has been established and been used in aircraft development abord. In China, the in-house Coupled Analysis Platform for Thermal Environment and structure Response (FL-CAPTER) platform has also been independently developed by China Aerodynamic Research and Development Center (CARDC). In order to verify the effectiveness of the multi-field coupling calculation method, designing a wind tunnel test has very important significance. In this paper, according to coupling test requirements, wind tunnel selection, model size estimation, model material selection, model aerodynamic design and model structure design are carried out based on existing materials and equipment capacities. The preliminary study shows that the local high temperature near the model support structure will be beneficial to produce a considerable deformation in front of the model. On this basis, the exploratory design of the test model is carried out, and the short time wind tunnel test of the stainless steel model is completed. The test model is calculated using the in-house FL-CAPTER platform. The results show that the test model is feasible. This work establishes the foundation for improving the high-temperature alloy test model design.
Key words: multi-field coupling; test model; design; aeroheating; thermal response; thermal deformation
[1] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1):47-56. YANG Y Z, YANG J L, FANG D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1):47-56(in Chinese).
[2] WITEOF Z D, NEERGAARD L J, VANDERWYST A S. Dynamic fluid-thermal-structural interaction effects in preliminary design of high speed vehicles[C]//15th Dynamics Specialists Conference. Reston, VA:AIAA, 2016.
[3] MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow:Past, present, and future[J]. AIAA Journal, 2011, 49(6):1089-1122.
[4] WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11):1557-1565.
[5] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:121-122. LIU L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang:China Aerodynamics Research and Development Center, 2014:121-122(in Chinese).
[6] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft, 1989, 26(4):201-209.
[7] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4):422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4):422-427(in Chinese).
[8] 夏刚, 刘新建, 程文科, 等. 钝体高超声速气动加热与结构热传递耦合的数值计算[J]. 国防科技大学学报, 2003, 25(1):35-39. XIA G, LIU X J, CHENG W K, et al. Numerical simulation of coupled aeroheating and solid heat penetration for hypersonic blunt body[J]. Journal of National University of Defense Technology, 2003, 25(1):35-39(in Chinese).
[9] GUELHAN A, ESSER B, KOCH U. Experimental investigation of gap flows on a flap model in the arc heated facility L3K:DLR-IB-39113-99C01[R]. Cologne:DLR, 1999.
[10] ESSER B, GULHAN A, SCHAFER R. Experimental investigation of thermal fluid/structure interaction in high enthalpy flow[C]//5th European Symposium on Aerothermodynamics for Space Vehicles. Cologne:DLR, 2004.
[11] HAUPT M C, NIESNER R, UNGER R, et al. Computational aero-structural coupling for hypersonic applications[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, VA:AIAA, 2006.
[12] 桂业伟, 刘磊, 代光月, 等. 高超飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status on hypersonic vehicle fluid-thermal-structural coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[13] ROGER M. Aerothermoelasticity[J]. Aero/Space Engineering, 1958, 17(10):34-43.
[14] 《中国航空材料手册》编辑委员会. 中国航空材料手册第2卷变形高温合金铸造高温合金[M]. 北京:中国标准出版社, 2002:829-835. Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook, Volume 2:Deformation superalloys & casting superalloys[M]. Beijing:China Standards Press, 2002:829-835(in Chinese).
[15] 霍格尔巴宾斯基, 约翰K哈维. 激波边界层干扰[M]. 北京:国防工业出版社, 2015:13-15. HOLGER B, JOHN K H. Shock wave-boundary-layer interactions[M]. Beijing:National Defense Industry Press, 2015:13-15(in Chinese).
[16] 刘磊, 桂业伟, 耿湘人, 等. 热气动弹性变形对飞行器结构温度场的影响研究[J]. 空气动力学学报, 2015, 33(1):31-36. LIU L, GUI Y W, GENG X R, et al. Study on the temperature field of hypersonic vehicle strucuture with aerothermoelasticity deformation[J]. Acta Aerodynamica Sinica, 2015, 33(1):31-36(in Chinese).
[17] 桂业伟, 刘磊, 杜雁霞. 热防护系统耦合分析方法与应用[J]. 现代防御技术, 2014, 42(4):9-14. GUI Y W, LIU L, DU Y X. Coupled analysis methods and applications of thermal protection system[J]. Modern Defence Technology, 2014, 42(4):9-14(in Chinese).
[18] LANEY C B. Computational gasdynamics[M].Cambridge:Cambridge University Press, 1998:233-235.
[19] SCOTT J N, NIU Y Y. Comparison of limiters in flux-split algorithms for euler equations[C]//31st Aerospace Sciences Meeting and Exhibit.Reston, VA:AIAA, 1993.
[20] YOON S, KWAK D, CHANG L. LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term[C]//9th AIAA Computational Fluid Dynamics Conference. Reston, VA:AIAA, 1989.
[21] 张昊元. 高超声速飞行器前缘缝隙流动气动热环境数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2012:7-8. ZHANG H Y. Numerical investigation for aerodynamic heating environment on leading-edge gap of hypersonic vehicle[D]. Mianyang:China Aerodynamics Research and Development Center, 2012:7-8(in Chinese).
[22] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001:14-17. TAO W Q. Numerical heat transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001:14-17(in Chinese).
[23] INCROPERA F P, DEWITT D P, DERGMAN T L, et al. Fundamentals of heat and mass transfer[M]. 6th ed. New York:John Wiley & Sons, Inc., 2007:43-48.
[24] 竹内洋一郎. 热应力[M]. 郭廷玮, 李安定, 译. 北京:科学出版社, 1977:358-365. Takeuchi H. Thermal stress[M]. GUO T W, LI A D, translated. Beijing:Science Press, 1977:358-365(in Chinese).
[25] ARNE C, STOKES T, TANG H, et al. Aerothermo-dynamic characteristics of slender ablating reentry vehicles[C]//5th Thermophysics Conference. Reston, VA:AIAA:1970.
[26] LANGTRY R. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:Stuttgrart University, 2006:51-57.
[27] 龚浩瀚, 姜锦虎, 陈大庆. 网格数字图像相关方法测量位移场的研究[J]. 实验力学, 2000, 15(2):246-252. GONG H H, JIANG J H, CHEN D Q. Displacement measurement by grid digital image correlation[J]. Journal of Experimental Mechanics, 2000, 15(2):246-252(in Chinese).
/
〈 | 〉 |