基于夹具主动定位补偿的飞机柔性件装配偏差优化方法
收稿日期: 2016-10-18
修回日期: 2016-12-08
网络出版日期: 2016-12-19
基金资助
国家自然科学基金(51275236)
Assembly variation optimization method of aircraft compliant parts based on active locating compensation of fixture
Received date: 2016-10-18
Revised date: 2016-12-08
Online published: 2016-12-19
Supported by
National Natural Science Foundation of China (51275236)
柔性零件广泛用于航空、汽车等产品中,在柔性件的装配过程中,装配尺寸质量受零件制造、夹具和连接过程中多种偏差源的耦合影响,分析和控制难度大。提出了一种基于夹具主动定位补偿的装配偏差优化方法。首先,基于柔性件装配的受力变形分析,建立了考虑夹具法向定位误差的装配偏差模型。然后,根据上述模型,以夹具法向定位补偿量为优化变量,提出了夹具法向补偿量的优化模型和求解算法。以金属薄板装配和飞机壁板件装配为例,分别利用实验及有限元仿真分析了有无夹具主动定位补偿下的装配偏差。结果表明,夹具法向定位补偿对于减小柔性件的装配偏差具有显著效果,从而验证该优化算法的有效性和准确性。
张玮 , 王志国 , 谭昌柏 , 刘霞 . 基于夹具主动定位补偿的飞机柔性件装配偏差优化方法[J]. 航空学报, 2017 , 38(6) : 420862 -420862 . DOI: 10.7527/S1000-6893.2016.420862
Compliant parts are widely used in such products as aircrafts and automobiles. It is quite challenging to analyze and control the compliant assembly quality because the assembly is subject to the coupled effect of multiple error sources in part manufacturing, tooling and joining. A new methodology for assembly variation optimization is proposed based on the concept of active fixture locating compensation. First, an assembly variation model is developed by force-deformation analysis in compliant assembly considering fixture normal locating errors. Based on the assembly variation model, an optimization model is further developed to calculate the optimal fixture normal compensation, which takes the locating points of fixture as variables. Case studies on sheet metal assembly and fuselage panel assembly are conducted. Comparative studies are conducted on the two cases, i.e., sheet metal assembly and fuselage panel assembly, in which the assembly variations with and without the proposed active fixture locating compensation are achieved and compared by experiment and Abaqus finite element analysis, respectively. The results show the proposed method can significantly decrease the predictive assembly variations.
[1] TAKEZAWA N. An improved method for establishing the process wise quality standard[R]. Tokyo: Union of Japanese Scientists and Engineers, 1980.
[2] LIU C, HU S J. An offset finite element model and its applications in predicting sheet metal assembly variation[J]. International Journal of Machine Tools & Manufacture, 1995, 35(11): 1545-1557.
[3] LIU S C, HU S J, WOO T C. Tolerance analysis for sheet metal assembly[J]. Transactions of the ASME, 1996, 118(1): 62-67.
[4] LIU C, HU S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science & Engineering, 1997, 119(3): 368-374.
[5] CAI W, HU S J, YUAN J X. Deformable sheet metal fixturing: principles, algorithms, and simulations[J]. Journal of Manufacturing Science and Engineering, 1996, 118(3): 318-324.
[6] HU S J, KOREN Y. Stream of variation theory for automotive body assembly[J]. CIRP Annals-Manufacturing Technology, 1997, 46(1): 1-6.
[7] HSIEH C C, KONG P O. A framework for modeling variation in vehicle assembly processes[J]. International Journal of Vehicle Design, 1997, 18(5): 466-473.
[8] HSIEH C C, KONG P O. Simulation and optimization of assembly processes involving flexible parts[J]. Journal of Manufacturing Science & Engineering, 1997, 18(5): 455-465.
[9] EIMARAGHY H A. Geometric design tolerancing: Theories, standards and applications[M]. Berlin: Springer, 1998: 208-219.
[10] CAMELIO J, HU S J, CEGLAREK D. Modeling variation propagation of multi-station assembly systems with compliant parts[J]. Journal of Mechanical Design, 2003, 125(125): 673-681.
[11] CAMELIO J A, HU S J, CEGLAREK D. Impact of fixture design on sheet metal assembly variation[J]. Journal of Manufacturing Systems, 2002, 23(23): 182-193.
[12] 田兆青, 来新民, 林忠钦. 多工位薄板装配偏差流传递的状态空间模型[J]. 机械工程学报, 2007, 43(2): 202-209. TIAN Z Q, LAI X M, LIN Z Q. State space model of variations stream propagation in multi-station assembly process of sheet metal[J]. Journal of Mechanical Engineering, 2007, 43(2):202-209 (in Chinese).
[13] CUI A, ZHANG H P. Tolerance allocation and maintenance optimal design for fixture in multi-station panel assembly process[J]. Applied Mechanics & Materials, 2010, 34-35:1039-1045.
[14] 邢彦锋, 赵晓昱, 吴伟蔚. 基于夹具配置的薄板件装配偏差分析模型[J]. 计算机集成制造系统, 2010, 16(2): 280-286. XING Y F, ZHAO X Y, WU W W. Assembly variation analysis model based on fixture configurations for sheet metal parts[J]. Computer Integrated Manufacturing Systems, 2010,16(2): 280-286 (in Chinese).
[15] DAHLSTRÖM S, LINDKVIST L. Variation simulation of sheet metal assemblies using the method of influence coefficients with contact modeling[J]. Journal of Manufacturing Science and Engineering, 2007, 129(3): 615-622.
[16] 谭昌柏, 袁军, 周来水. 基于宽容分层序列法的飞机装配公差稳健设计技术[J]. 中国机械工程, 2012, 23(24): 2962-2967. TAN C B, YUAN J, ZHOU L S. Robust tolerancing for aircraft assembly based on tolerant lexicographic method[J]. China Mechanical Engineering, 2012, 23(24): 2962-2967 (in Chinese).
[17] 陈晖, 谭昌柏, 王志国. 耦合几何与材料误差的柔性装配偏差统计分析[J]. 航空学报, 2015, 36(9): 3176-3186. CHEN H, TAN C B, WANG Z G. Statistical variation analysis of compliant assembly coupling geometrical and material error[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3176-3186 (in Chinese).
[18] 于奎刚, 金隼, 来新民. 基于Taguchi的柔性薄板装配夹具稳健设计[J]. 上海交通大学学报, 2009, 43(12): 1941-1945. YU K G, JIN S, LAI X M. A fixture locating robust design method of compliant sheet metal assembly based on Taguchi method[J]. Journal of Shanghai Jiaotong University, 2009, 43(12): 1941-1945 (in Chinese).
[19] CAI N, QIAO L. Rigid-compliant hybrid variation modeling of sheet metal assembly with 3D generic free surface[J]. Journal of Manufacturing Systems, 2016(41): 45-64.
[20] 孙辉鹏, 谭昌柏, 安鲁陵, 等. 基于并联装配模型的飞机壁板件装配偏差分析[J]. 航空制造技术, 2016(11): 88-102. SUN H P, TAN C B, AN L L, et al. Assembly variation analysis of aeronautical panels based on the model of assembly in parallel[J]. Aeronautical Manufacturing Technology, 2016(11): 88-102 (in Chinese).
/
〈 | 〉 |