飞机结冰致灾与防护专栏

多段翼型缝翼前缘结冰大迎角分离流动数值模拟

  • 张恒 ,
  • 李杰 ,
  • 龚志斌
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2016-08-31

  修回日期: 2016-11-03

  网络出版日期: 2016-11-21

基金资助

国家“973”计划(2015CB755800);国家自然科学基金(11172240);航空科学基金(2014ZA53002)

Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat

  • ZHANG Heng ,
  • LI Jie ,
  • GONG Zhibin
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-08-31

  Revised date: 2016-11-03

  Online published: 2016-11-21

Supported by

National Basic Research Program of China (2015CB755800); National Natural Science Foundation of China (11172240); Aeronautical Science Foundation of China (2014ZA53002)

摘要

应用基于SST(Shear-Stress-Transport)湍流模型的IDDES(Improved Delayed Detached Eddy Simulation)方法,对大迎角状态下多段翼型缝翼前缘典型角状冰引起的复杂分离流动进行了数值模拟研究。采用后台阶流动标准算例和干净无冰多段翼型分离流动算例对数值方法的可靠性和适用性进行了验证。缝翼结冰状态下的数值模拟结果表明:来流迎角较大时,前缘角状冰将会导致结构相对稳定的流动分离泡产生,分离泡的非定常尾迹会对主翼前缘附近流场产生较为强烈的干扰,抑制了缝道流动的加速效应,使得缝翼增升效率降低。在失速点附近,由于分离泡回流强度随来流迎角而增长,同时脱落旋涡的输运方向逐渐向远离壁面方向偏移,使得尾迹影响区域范围和强度均有所增加。

本文引用格式

张恒 , 李杰 , 龚志斌 . 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017 , 38(2) : 520733 -520746 . DOI: 10.7527/S1000-6893.2016.0285

Abstract

The improved delayed detached eddy simulation (IDDES) based on the shear-stress-transport (SST) turbulent model is applied in the numerical simulation of complex separated flow caused by a typical horn-like ice on the slat leading edge of a multi-element airfoil under a large angle of attack. The reliability and applicability of the numerical method is verified based on the analysis of the standard example of the separation flow and the example of the clean multi-element airfoil. Results of numerical simulation of the slat in icing condition show that the horn ice on the leading edge will lead to formation of a large scale separation bubble with relatively stable structure at high angle of attack. The unsteady wake of the separation bubble will generate relatively strong interference with the flow field around the leading region of the main wing, resulting in the decline of acceleration effect of the flow from the gap and the decrease of slat lift augmentation efficiency. Near the stall point, as the backflow intensity of separation bubble increases with the angle of attack of the incoming flow and the wake vortex transport direction gradually deviates from the wall surface, the range and intensity of the influence area of the wake are increased.

参考文献

[1] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8):669-767.
[2] GURBACKI H M, BRAGG M B. Unsteady flowfield about an iced airfoil:AIAA-2004-0562[R]. Reston:AIAA, 2004.
[3] ANSELL P J, BRAGG M B. Measurement of unsteady flow reattachment on an airfoil with a leading-edge horn-ice shape:AIAA-2012-2797[R]. Reston:AIAA, 2012.
[4] ANSELL P J, BRAGG M B. Characterization of ice-induced low-frequency flowfield oscillations and their effect on airfoil performance:AIAA-2013-2673[R]. Reston:AIAA, 2013.
[5] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[M]. Advances in DNS/LES, Columbus:Greydon Press, 1997.
[6] THOMPSON D S, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions:year one report:CR-2004-213379[R]. Washington, D.C.:NASA, 2004.
[7] MOGILI P, THOMPSON D S, CHOO Y, et al. RANS and DES computations for a wing with ice accretion:AIAA-2005-1372[R]. Reston:AIAA, 2005.
[8] LORENZO A, VALERO E, DE-PABLO V. DES/DDES post-stall study with iced airfoil:AIAA-2011-1103[R]. Reston:AIAA, 2011.
[9] TRAVIN A K, SHUR M L, SPALART P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modeling[C]//European Conference on Computational Fluid Dynamics, 2006.
[10] SPALART P R, DECK S, SHUR M, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[11] NIKITIN N V, NICOUD F, WASISTHO B, et al. An approach to wall modeling in large-eddy simulations[J]. Physic of Fluids, 2005, 12(7):1629-1632.
[12] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[13] HUANG J B, XIAO Z X, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(2):260-271.
[14] VAN LEER B. Towards the ultimate conservative difference scheme V:A second order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
[15] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[16] HUNT J, WRAY A, MOIN P. Eddies, streams and convergence zones in turbulent flows[C]//Proceedings of the 1988 summer program. Stanford:Center for Turbulence Research, 1988.
[17] KHODADOUST A, DOMINIK C. Effect of in-flight ice accretion on the performance of a multi-element airfoil:TM-112174[R]. Washington, D.C.:NASA, 1995.
[18] DECK S. Zonal-Detached-Eddy simulation of the flow around a high-lift configuration[J]. AIAA Journal, 2005, 43(11):2372-2384.
[19] ZHONG B, SCHEURICH F, TITAREV V, et al. Turbulent flow simulations around a multi-element airfoil using URANS, DES and ILES approaches:AIAA-2009-3799[R]. Reston:AIAA, 2009.
[20] ARNOTT A D, SCHNEIDER G, NEITZKE K P, et al. Detailed characterization using PIV of the flow around an airfoil in high-lift configuration[M]//Particle Image Velocimetry:Recent Improvements. Berlin Heidelberg:Springer, 2004.
[21] MILLER D, SHIN J W, SHELDON D, et al. Further investigations of icing effects on an advanced high-lift multi-element airfoil:TM-106947[R]. Washington, D.C.:NASA, 1995.
[22] PENG S H, NEBENFUHR B, DAVIDSON LARS. Lessons learned from hybrid RANS-LES computations of a three-element airfoil flow:AIAA-2013-2741[R]. Reston:AIAA, 2013.
[23] SPALART P R. Young-person's guide to detached-eddy simulation grids:CR-2001-211032[R]. Washington, D.C.:NASA, 2001.

文章导航

/