翼伞系统在未知风场中的归航控制
收稿日期: 2016-06-11
修回日期: 2016-09-20
网络出版日期: 2016-09-26
基金资助
国家自然科学基金(61273138,61573197);天津市重点基金(14JCZDJC39300);国家科技支撑计划(2015BAK06B04);天津市科技支撑计划重点项目(14ZCZDSF00022)
Homing control of parafoil systems in unknown wind environments
Received date: 2016-06-11
Revised date: 2016-09-20
Online published: 2016-09-26
Supported by
National Natural Science Foundation of China (61273138,61573197);Key Fund of Tianjin (14JCZDJC39300);National Key Technology Research and Development Program of China (2015BAK06B04);Key Technologies R&D Program of Tianjin (14ZCZDSF00022)
陶金 , 孙青林 , 檀盼龙 , 邬婉楠 , 陈增强 , 贺应平 . 翼伞系统在未知风场中的归航控制[J]. 航空学报, 2017 , 38(5) : 320523 -320523 . DOI: 10.7527/S1000-6893.2016.0258
It is important for parafoil systems in performing homing tasks in unknown wind environments to identify the speed and direction of the wind, so as to take advantage or eliminate impacts of the wind in the homing process. To realize accurate homing and flare landing, a wind identification method using global position system (GPS) information and least square method is proposed to the estimate unknown wind disturbances. A multiphase homing trajectory is planned with consideration of the influences of the mean winds. A homing trajectory tracking controller is designed based on linear active disturbance rejection control (LADRC) strategy to observe and compensate the disturbances of gusts. Simulation experiments of homing in unknown windy conditions are conducted. The results demonstrate that the proposed homing control method is of great importance for improving homing accuracy and wind resistance ability of homing of parafoil systems in unknown wind environments.
[1] YAKIMENKO O A. Precision aerial delivery systems:Modeling, dynamics, and control[M]. Reston:AIAA, 2015:2-16.
[2] 朱旭, 曹义华. 翼伞平面形状对翼伞气动性能的影响[J]. 航空学报, 2011, 32(11):1998-2007. ZHU X, CAO Y H. Numerical simulation of planform geometry effect on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11):1998-2007 (in Chinese).
[3] 朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J]. 航空学报, 2012, 33(7):1189-1200. ZHU X, CAO Y H. Effects of arc-anhedal angle, airfoil and leading edge cut on parafoil aerodynamic performance[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1189-1200 (in Chinese).
[4] 张兴会, 朱二琳. 翼伞系统雀降性能及控制研究[J]. 航天控制, 2012, 30(1):29-33. ZHANG X H, ZHU E L. The study of the flare-landing performance and control of parafoil system[J]. Aerospace Control, 2012, 30(1):29-33 (in Chinese).
[5] 檀盼龙, 孙青林, 高海涛, 等. 动力翼伞系统空投风场的辨识与应用[J]. 航空学报, 2016, 37(7):2286-2294. TAN P L, SUN Q L, GAO H T, et al. Wind identification and application of the powered parafoil system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2286-2294 (in Chinese).
[6] LI Y, LIN H. Theoretical investigation of gliding parachute trajectory with deadband and non-proportional automatic homing control[C]//11th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 1991:42-47.
[7] ZHANG L M, GAO H T, CHEN Z Q, et al. Multi-objective global optimal parafoil homing trajectory optimization via gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1-2):1-8.
[8] TAO J, SUN Q L, ZHU E L, et al. Quantum genetic algorithm based homing trajectory planning of parafoil system[C]//34th Chinese Control Conference (CCC). Piscataway, NJ:IEEE Press, 2015:2523-2528.
[9] SIM A G, MURRAY J E, NEUFELD D C, et al. Development and flight testing of a deployable precision landing system[J]. Journal of Aircraft, 1994, 31(5):1101-1108.
[10] JANN T. Advanced features for autonomous parafoil guidance, navigation and control:AIAA-2005-16428[R]. Reston:AIAA, 2005.
[11] SOPPA U, STRAUCH R. GNC concept for automated landing of a large parafoil:AIAA-1997-1464[R]. Reston:AIAA, 1997.
[12] 熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科学技术大学, 2005:95-104. XIONG J. Research on the dynamics and homing project of parafoil system[D]. Changsha:National University of Defense Technology, 2005:95-104 (in Chinese).
[13] SLEGERS N J,YAKIMENKO O A.Optimal control for terminal guidance of autonomous parafoils:AIAA-2009-2958[R]. Reston:AIAA, 2009.
[14] BENJAMIN S C. Adaptive control of a 10K parafoil system:AIAA-2015-2107[R]. Reston:AIAA, 2015.
[15] KAMINER I I, YAKIMENKO O A. On the development of GNC algorithm for a high-glide payload delivery system[C]//42th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2003:5438-5443.
[16] ZHU E L, SUN Q L, TAN P L, et al. Modeling of powered parafoil based on Kirchhoff motion equation[J]. Nonlinear Dynamics, 2015, 79(1):617-629.
[17] 司维超, 韩维, 史玮韦. 基于PSO算法的舰载机舰面布放调度方法研究[J]. 航空学报, 2012, 33(11):2048-2056. SI W C, HAN W, SHI W W. Research on dech-disposed scheduling method of carrier planes based on PSO algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2048-2056 (in Chinese).
[18] 李丁, 夏露. 改进的粒子群优化算法在气动设计中的应用[J]. 航空学报, 2012, 33(10):1809-1816. LI D, XIA L. Application of improved particle swarm optimization algorithm to aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1809-1816 (in Chinese).
[19] 刘玲, 钟伟民, 钱锋. 改进的混沌粒子群优化算法[J]. 华东理工大学学报(自然科学版), 2010, 36(2):267-272. LIU L, ZHONG W M, QIAN F. An improve chaos-particle swarm optimization algorithm[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(2):267-272 (in Chinese).
[20] BREIVIK M, FOSSEN T I. Principles of guidance-based path following in 2D and 3D[C]//44th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2005:627-634.
[21] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[22] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//American Control Conference. Piscataway, NJ:IEEE Press, 2003:4989-4996.
[23] ZHANG H B, WANG J K, CHEN G Q, et al. A new hybrid control scheme for an integrated helicopter and engine system[J]. Chinese Journal of Aeronautics, 2012, 25(4):533-545.
[24] 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制[J]. 航空学报, 2012, 33(11):2121-2129. LI Z X, LI G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2121-2129 (in Chinese).
[25] 王彦雄, 祝小平, 周洲, 等. 穿越微下冲气流的飞翼布局无人机控制方法[J]. 航空学报, 2015, 36(5):1673-1683. WANG Y X, ZHU X P, ZHOU Z, et al. A control method of flying wing UAV for penetration of microburst[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1673-1683 (in Chinese).
[26] 熊菁, 秦子增, 程文科. 回收过程中高空风场的特点及描述[J]. 航天返回与遥感, 2003, 24(3):9-14. XIONG J, QIN Z Z, CHENG W K. The characteristics and description of mid-high altitude wind in recovery[J]. Spacecraft Recovery and Remote Sensing, 2003, 24(3):9-14 (in Chinese).
/
〈 | 〉 |