固体力学与飞行器总体设计

压电纤维复合材料驱动的机翼动态形状控制

  • 王晓明 ,
  • 周文雅 ,
  • 吴志刚
展开
  • 1. 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连 116024;
    2. 大连理工大学 航空航天学院, 大连 116024

收稿日期: 2016-04-11

  修回日期: 2016-07-06

  网络出版日期: 2016-07-21

基金资助

国家自然科学基金(11432010,11502041)

Dynamic shape control of wings using piezoelectric fiber composite materials

  • WANG Xiaoming ,
  • ZHOU Wenya ,
  • WU Zhigang
Expand
  • 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
    2. School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China

Received date: 2016-04-11

  Revised date: 2016-07-06

  Online published: 2016-07-21

Supported by

National Natural Science Foundation of China (11432010, 11502041)

摘要

利用压电材料实现柔性机翼的主动形状控制,能够有效提高机翼结构效率和气动性能;要实现连续、光滑的高精确形状控制效果,机翼变形过程必须满足一定的动态要求。本文利用在上下翼面反对称铺设的新型压电纤维复合材料——宏纤维复合材料(MFC)提供驱动力矩,研究了机翼扭转变形的前馈轨迹跟踪控制。首先建立了机翼结构有限元模型和气动力载荷模型,采用载荷比拟法得到MFC作动器的控制载荷向量,给出了气动弹性控制方程及其状态空间表达形式。为跟踪预设的变形参考轨迹,以跟踪误差的时域积分为目标函数,对MFC作动器的电压加载历程进行了优化设计。结果表明,采用规划后的电压加载历程,机翼气动弹性响应很好地跟踪了预期参考轨迹,实现了连续、光滑的动态形状控制效果,提高了控制精度。

本文引用格式

王晓明 , 周文雅 , 吴志刚 . 压电纤维复合材料驱动的机翼动态形状控制[J]. 航空学报, 2017 , 38(1) : 220313 -220313 . DOI: 10.7527/S1000-6893.2016.0207

Abstract

The structure efficiency and aerodynamic performance of flexible wings can be effectively improved with active shape control using piezoelectric materials. In order to realize the effect of continuous smooth dynamic shape control with high precision, some dynamical requirements must be satisfied in shape control process of the wings. In this study, new piezoelectric fiber composite materials-macro fiber composite (MFC), which are laid anti-symmetrically on the top and bottom wing surfaces, are used for actuation to achieve feedforward tracking control of twist motion of the wing. The structural finite element model for the wing and the aerodynamic loads are established. The control input vector for the MFC is obtained using load simulation method. The active aeroelastic equations and the state space representation are presented. In order to track the pre-defined deformation reference trajectory, the voltage profiles for MFC actuators are optimized with time-domain integration of tracking errors being chosen as the objective function. The simulation results show that the aeroelastic responses of the wing follow the prospective reference trajectory well with application of the optimal voltage profiles. Continuous smooth dynamic shape control effect has been realized, and control precision has been improved.

参考文献

[1] SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing:Status and challenges[J]. Materials & Design, 2010, 31(3):1284-1292.
[2] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1):29-45. LENG J S, SUN J, LIU Y J. Application status and future prospect of smart material and structures in morphing aircraf[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):29-45(in Chinese).
[3] 杨超, 陈桂彬. 主动气动弹性机翼技术分析[J]. 北京航空航天大学学报, 1999, 25(2):171-175. YANG C, CHEN G B. Analysis of active aeroelastic wing technolog[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2):171-175(in Chinese).
[4] KUDVA J N, MARTIN C A, SCHERER L B, et al. Overview of the DARPA/AFRL/NASA smart wing program[C]//Proceedings of the 1999 Symposium on Smart Structures and Materials. Bellingham, WA:International Society for Optics and Photonics, SPIE, 1999:230-236.
[5] 李敏, 陈伟民, 贾丽杰. 压电驱动器的气动弹性应用[J]. 航空学报, 2009, 30(12):2301-2310. LI M, CHEN W M, JIA L J. Application of piezoelectric actuators to aircraft aeroelastic performance enhancement[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2301-2310(in Chinese).
[6] 李继威, 张勇, 陈继春. 压电材料在飞行翼形控制方面的一些应用[J]. 电子元件与材料, 2009, 28(6):74-78. LI J W, ZHANG Y, CHEN J C. Application to control airfoil of aerocraft using piezoelectric materials[J]. Electronic Components and Materials, 2009, 28(6):74-78(in Chinese).
[7] 李敏, 陈伟民, 贾丽杰. 压电纤维复合材料铺层用于翼面设计的驱动特性与刚度影响[J]. 航空学报, 2010, 31(2):418-425. LI M, CHEN W M, JIA L J. Drive characteristics and stiffness influence with piezoelectric fiber composite actuators on airfoil surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):418-425(in Chinese).
[8] 赵寿根, 程伟, 管德. 1-3型压电纤维主动叠层板扭转特性的研究[J]. 航空学报, 2006, 27(4):624-629. ZHAO S G, CHENG W, GUAN D. Torsion characteristics of active laminates with 1-3 PFC layers[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):624-629(in Chinese).
[9] WILLIAMS R B, PARK G, INMAN D J, et al. An overview of composite actuators with piezoceramic fibers[C]//Proceedings of IMAC-XX:A Conference on Structural Dynamics. Bellingham, WA:SPIE, 2002:421-427.
[10] BILGEN O, KOCHERSBERGER K, DIGGS E C, et al. Morphing wing aerodynamic control via macro-fiber-composite actuators in an unmanned aircraft[C]//Proceedings of the 2007 AIAA InfoTech at Aerospace Conference. Reston:AIAA, 2007:303-319.
[11] 张红艳, 白长青, 沈亚鹏. 粗纤维压电复合材料(MFC)对旋翼桨叶模型扭转控制的实验及数值研究[J]. 应用力学学报, 2009, 26(3):456-460. ZHANG H Y, BAI C Q, SHEN Y P. Experimental and numerical analysis for twist control of rotor blade model with macro fiber composite (MFC)[J]. Chinese Journal of Applied Mechanics, 2009, 26(3):456-460(in Chinese).
[12] 脱朝智, 钱卫, 杨睿. 主动压电纤维的驱动仿真与试验研究[C]//第十二届全国空气弹性学术交流会论文集. 北京:中国空气动力学学会,中国力学学会, 2011:581-586. TUO Z Z, QIAN W, YANG R. Simulation and experimental study on the active piezoelectric fiber driver[C]//Proceedings of the 12th National Aeroelasticity Academic Communication. Beijing:Chinese Aerodynamics Research Society, The Chinese Society of Theoretical and Applied Mechanics, 2011:581-586(in Chinese).
[13] KALAYCIOGLU S, SILVA D. Minimization of vibration of spacecraft appendages during shape control using smart structures[J]. Journal of Guidance Control and Dynamics, 2000, 23(3):558-561.
[14] LI M, CHEN W M, GUAN D. Improvement of aircraft rolling power by use of piezoelectric actuators[J]. Chinese Journal of Aeronautics, 2004, 17(2):87-92.
[15] 陆宇平, 何真. 变体飞行器控制系统综述[J]. 航空学报, 2009, 30(10):1906-1911. LU Y P, HE Z. A survey of morphing aircraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1906-1911(in Chinese).
[16] SCHROCK J, MEURER T, KUGI A. Motion planning for piezo-actuated flexible structures:Modeling, design, and experiment[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3):807-819.
[17] 沈观林, 胡更开. 复合材料力学[M]. 北京:清华大学出版社, 2006:202-204. SHEN G L, HU G K. Mechanics of composite materials[M]. Beijing:Tsinghua University Press, 2006:202-204(in Chinese).
[18] 杨超, 吴志刚, 万志强. 飞行器气动弹性原理[M]. 北京:北京航空航天大学出版社, 2011:52-54. YANG C, WU Z G, WAN Z Q. Aeroelasticity principle of aircraft[M]. Beijing:Beihang Press, 2011:52-54(in Chinese).
[19] 李敏, 陈伟民, 王明春, 等. 压电驱动的载荷比拟方法[J]. 中国科学(E辑:技术科学), 2009, 39(11):1810-1817. LI M, CHEN W M, WANG M C, et al. A load simulation method of piezoelectric actuator in FEM for smart structures[J]. Science in China (Series E:Technological Sciences), 2009, 39(11):1810-1817(in Chinese).
[20] 高仁璟, 张莹, 吴书豪, 等. 面向结构形状控制的驱动器结构参数与控制电压协同优化设计[J]. 光学精密工程, 2014, 22(6):1538-1546. GAO R J, ZHANG Y, WU S H, et al. Integrated design optimization of actuator structural parameters and control voltages for morphing structural shapes[J]. Optics and Precision Engineering, 2014, 22(6):1538-1546(in Chinese).
[21] 孙杰, 李敏, 张骞. 垂直尾翼抖振的压电主动控制研究[C]//北京力学会第20届学术年会论文集. 北京:中国力学学会, 2014. SUN J, LI M, ZHANG Q. Piezoelectric active control of vertical tail buffeting[C]//Proceedings of the 20th Annual Seminar of the Beijing Society of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2014(in Chinese).
[22] 单辉祖. 材料力学教程[M]. 北京:高等教育出版社, 2004:202-204. SHAN H Z. Material mechanics course[M]. Beijing:Higher Education Press, 2004:202-204(in Chinese).
[23] FORSTER E E, YANG H T Y. Flutter control of wing boxes using piezoelectric actuators[J]. Journal of Aircraft, 1998, 35(6):949-957.
[24] 陈宝林. 最优化理论与算法[M]. 北京:清华大学出版社, 2005:417-422. CHEN B L. Theory and algorithms of optimization[M]. Beijing:Tsinghua University Press, 2005:417-422(in Chinese).

文章导航

/