基于多维航迹特征的异常行为检测方法
收稿日期: 2016-05-17
修回日期: 2016-07-18
网络出版日期: 2016-07-19
基金资助
国家自然科学基金(61531020,61471383,91538201);山东省科技重大专项基金(2015ZDZX01001)
Anomalous behavior detection method based on multidimensional trajectory characteristics
Received date: 2016-05-17
Revised date: 2016-07-18
Online published: 2016-07-19
Supported by
National Natural Science Foundation of China (61531020, 61471383, 91538201); Major Science and Technology Projects in Shandong Province (2015ZDZX01001)
在信息融合领域,利用数据挖掘中的异常检测技术,可以基于目标的多维航迹特征来挖掘目标的异常行为。现有轨迹异常检测方法主要检测目标的位置异常,没有充分利用目标的属性、类型、位置、速度和航向等多维特征,在挖掘目标的异常行为时具有局限性。通过定义多因素定向Hausdorff距离和构造多维度局部异常因子,提出了一种基于多维航迹特征的异常行为检测方法,通过对多维航迹数据的异常检测,实现对目标异常行为的挖掘。在仿真军事场景和真实的民用场景上进行了实验分析,所提方法都能有效的检测出目标的异常行为。
关键词: 异常行为; 航迹; 多维特征; 局部异常因子; Hausdorff距离
潘新龙 , 王海鹏 , 何友 , 熊伟 , 周伟 . 基于多维航迹特征的异常行为检测方法[J]. 航空学报, 2017 , 38(4) : 320442 -320442 . DOI: 10.7527/S1000-6893.2016.0217
In the information fusion domain, anomalous behaviors could be mined based on multidimensional trajectory characteristics by using the anomalous detection technique in data mining. Previous trajectory anomaly detection algorithms mainly detect the position anomalies, without making full use of the attribute, category, position, velocity, and course characteristics. In order to overcome this limitation, we define the multi-factor Hausdorff distance, construct the multidimensional local outlier factor, and propose a method for detecting anomalous behaviors based on multidimensional trajectory characteristics. The method can mine anomalous behaviors based on detecting multidimensional trajectories. We conducted experiments on simulated military scenario and real civilian scenario, the proposed method can effectively detect the anomalous behavior of the target.
[1] 何友, 王国宏, 关欣, 等. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:1-15. HE Y, WANG G H, GUAN X, et al. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:1-15 (in Chinese).
[2] CHEN M S, HAN J, YU P S. Data mining:An overview from a database perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1997, 8(6):866-883.
[3] HAN J, KAMBER M. Data mining:Concepts and techniques[M]. San Francisco:Morgan Kaufmann, 2001:1-18.
[4] ZHENG Y. Trajectory data mining:An overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3):1-41.
[5] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection:A survey[J]. ACM Computing Surveys, 2009, 41(3):1-58.
[6] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection for discrete sequences:A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(99):1-16.
[7] BARNETT V, LEWIS T. Outliers in statistical data[M]. New York:Wiley, 1994:24-26.
[8] KNORR E M, NG R T, TUCAKOV V. Distance-based outliers:Algorithms and applications[J]. International Journal on Very Large Data Bases, 2000, 8(3):237-253.
[9] JIN W, TUNG A K H, HAN J, et al. Ranking outliers using symmetric neighborhood relationship[J]. Lecture Notes in Computer Science, 2006, 3918:577-593.
[10] STRUYF A, ROUSSEEUW P J. High-dimensional computation of the deepest location[J]. Computational Statistics and Data Analysis, 2000, 34:415-426.
[11] SARAWAGI S, AGRAWAL R, MEGIDDO N. Discovery driven exploration of OLAP data cubes[M]. Berlin:Springer, 1998:67-69.
[12] KNORR E M, NG R T. Algorithms for mining distanced-based outliers in large datasets[C]//Proceedings of 24th International Conference on Very Large Data Bases. New York:Morgan Kaufmann, 1998:392-403.
[13] LI X, HAN J, KIM S. Motion-Alert:Automatic anomaly detection in massive moving objects[C]//IEEE International Conference on Intelligence and Security Informatics. Piscataway, NJ:IEEE Press, 2006:166-177.
[14] LI X, HAN J, KIM S, et al. ROAM:Rule-based and motif-based anomaly detection in massive moving object data sets[C]//Proceedings of 7th SIAM International Conference on Data Mining. Philadelphia:SIAM Press, 2007:273-284.
[15] LEE J G, HAN J, LI X. Trajectory outlier detection:A partition-and-detect framework[C]//Proceedings of 24th International Conference on Data Engineering. Washington, D.C.:IEEE Computer Society, 2008:140-149.
[16] 刘良旭, 乔少杰, 刘宾, 等. 基于R-Tree的高效异常轨迹检测算法[J]. 软件学报, 2009, 20(9):2426-2435. LIU L X, QIAO S J, LIU B, et al. Efficient trajectory outlier detection algorithm based on R-Tree[J]. Journal of Software, 2009, 20(9):2426-2435 (in Chinese).
[17] YANG A, TAN X, BAEK J, et al. A new ADS-B authentication framework based on efficient hierarchical identity-based signature with batch verification[J]. IEEE Transactions on Services Computing, 1939, PP(99):1.
[18] 沈笑云, 唐鹏, 张思远, 等. ADS-B统计数据的位置导航不确定类别质量分析[J]. 航空学报, 2015, 36(9):3128-3136. SHEN X Y, TANG P, ZHANG S Y, et al. Quality analysis of navigation uncertain category for position based on ADS-B statistical data[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3128-3136 (in Chinese).
[19] HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W A. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863.
[20] GAO Y, LEUNG M K H. Line segment Hausdorff distance on face matching[J]. Pattern Recognition, 2002, 35(2):361-371.
[21] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:Identifying density-based local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data, 2000, 29(2):93-104.
[22] JANSSENS J, POSTMA E. One-class classification with LOF and LOCI:An empirical comparison[C]//Proceedings of the 18th Belgian-Dutch Conference on Machine Learning, 2009:1021-1040.
[23] PICIARELLI C, MICHELONI C, FORESTI G. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11):1544-1554.
[24] LAXHAMMAR R, FALKMAN G. Online learning and sequential anomaly detection in trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1158-1173.
/
〈 | 〉 |