结构与防热

飞行器热天线热电联合计算方法

  • 张晓晨 ,
  • 林朝光 ,
  • 王振峰 ,
  • 于明星 ,
  • 谈和平
展开
  • 1. 哈尔滨工业大学, 能源科学与工程学院, 哈尔滨 150001;
    2. 空间物理重点实验室, 北京 100076
张晓晨,男,博士。主要研究方向:高超声速飞行器防隔热及温控设计,天线-天线罩一体化设计,超电大尺寸电磁散射透射特性仿真。Tel.:010-88524988,E-mail:zhangxiaochen18@163.com

收稿日期: 2016-04-20

  修回日期: 2016-06-14

  网络出版日期: 2016-07-05

Thermoelectric coupling calculation method for aircraft thermal antenna

  • ZHANG Xiaochen ,
  • LIN Chaoguang ,
  • WANG Zhenfeng ,
  • YU Mingxing ,
  • TAN Heping
Expand
  • 1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. Science and Technology on Space Physics Laboratory, Beijing 100076, China

Received date: 2016-04-20

  Revised date: 2016-06-14

  Online published: 2016-07-05

摘要

为了研究高温环境对热天线电性能的影响,提出了一种热电联合计算方法,通过三维热、电信息传递程序实现不同温度区域介电性能的空间加载,以此关联温度场与电磁场网格节点信息,实现温度场-电磁场耦合问题的联合计算。介绍了热电联合计算方法的原理与思路,并以某型热天线为研究对象,考查天线温度分布对电性能的影响程度,为飞行器热天线的精细化设计提供了途径。该方法可应用于热透波结构的高温电性能分析,尤其对于恶劣热环境下的热天线/天线罩设计具有较高的应用价值。

本文引用格式

张晓晨 , 林朝光 , 王振峰 , 于明星 , 谈和平 . 飞行器热天线热电联合计算方法[J]. 航空学报, 2016 , 37(S1) : 66 -72 . DOI: 10.7527/S1000-6893.2016.0193

Abstract

To study the influence of high temperature on the electrical properties of thermal antennas, a thermoelectric coupling calculation method is proposed in this paper. The 3D grids information for both temperature field and electromagnetic field are associated by a designed information transfer program, which loads corresponding dielectric parameters based on local temperature to achieve thermoelectric coupling analysis. This paper presents the principle of thermoelectric coupling calculation. To realize fine design of aircraft thermal antenna, the directional patterns of a thermal antenna at room temperature and high temperature are studied and compared. The method can be used to analyze the electrical properties of heat wave-transmitting structure at high temperature, and has an important application in thermal antenna/radome design in harsh thermal environment.

参考文献

[1] 王从思, 刘鑫, 王伟, 等. 大型反射面天线温度分布规律及变形影响分析[J]. 宇航学报, 2013, 34(11):1523-1528. WANG C S, LIU X, WANG W, et al. Analysis method for temperature distribution characteristic and thermal distortion of large reflector antennas[J]. Journal of Astronautics, 2013, 34(11):1523-1528 (in Chinese).
[2] 张东梅. 卫星光通信终端光学天线温度特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014:3-6. ZHANG D M. Characteristic of temperature change on optical antenna of satellite laser communication terminals[D]. Harbin:Harbin Institute of Technology, 2014:3-6 (in Chinese).
[3] 王向晖, 陈士举, 袁健全. 天线罩相关参数的改变对天线方向图影响[J]. 制导与引信, 2007, 28(1):30-32. WANG X H, CHEN S J, YUAN J Q. Research on the influence of radome's parameter altered to antenna directional diagram[J]. Guidance & Fuze, 2007, 28(1):30-32 (in Chinese).
[4] 杨洁颖, 吕毅, 张春波, 等. 飞行器用透波材料及天线罩技术研究进展[J]. 宇航材料工艺, 2015(4):6-9. YANG J Y, LV Y, YUAN J Q, et al. Improvements of microwave transparent composites and aircraft radome[J]. Aerospace Materials & Technology, 2015(4):6-9 (in Chinese).
[5] 谢小军, 成永红, 崔浩, 等. 基于分子模拟的二氧化硅介电常数温度特性规律的研究[J]. 四川大学学报(自然科学版), 2005, 42(2):94-98. XIE X J, CHENG Y H, CUI H, et al. Study on dielectric property with temperature based on the molecule simulation technique[J]. Journal of Sichuan University (Natural Science Edition), 2005, 42(2):94-98 (in Chinese).
[6] 帅永, 张晓晨, 卿恒新, 等. 基于I-DEAS的非线性多热源温度场反演研究[J]. 宇航学报, 2011, 32(9):2088-2094. SHUAI Y, ZHANG X C, QING H X, et al. Inversion research on temperature field with nonlinear multiple heat source using I-DEAS[J]. Journal of Astronautics, 2011, 32(9):2088-2094(in Chinese).
[7] 张兆, 沈孟育, 张涵信. 基于非结构Cartesian网格的电磁散射场计算[J]. 清华大学学报(自然科学版), 2007, 47(11):2068-2071. ZHANG Z, SHEN M Y, ZHANG H X. Computation of electromagnetic scattering field based on unstructured Cartesian grids[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(11):2068-2071(in Chinese).
[8] 王永, 林中朝, 张玉, 等. 并行矩量法分析波导缝隙天线的辐射特性[J]. 西安电子科技大学学报(自然科学版), 2015, 42(5):75-79. WANG Y, LIN Z C, ZHANG Y, et al. Analysis of the radiation of slotted waveguide antennas using the parallel MoM[J]. Journal of Xidian University (Natural Science Edition), 2015, 42(5):75-79 (in Chinese).
[9] 江雄心, 万平荣. 三维有限元网格节点编号优化[J]. 工程图学学报, 2008(4):22-26. JIANG X X, WAN P R. Optimization of node numbering in 3D finite element[J]. Journal of Graphics, 2008(4):22-26(in Chinese).
[10] 韩向科, 钱若军, 苏波. 基于紧支径向基函数的流固交互作用数据传递[J]. 同济大学学报(自然科学版), 2011, 39 (1):48-51. HAN X K, QIAN R J, SU B. Data exchange method for fluid-structure interaction based on interpolation algorithm adopting compactly supported radial based function[J]. Journal of Tongji University (Natural Science), 2011, 39(1):48-52 (in Chinese).
[11] DETTMER W, PERIE D. A computational framework for fluid-rigid body interaction:Finite element formulation and applications[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(13):1633-1666.
[12] 吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报, 2002, 19(2):1-12. WU Z M. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs[J]. Chinese Journal of Engineering Mathematics, 2002, 19(2):1-12 (in Chinese).
[13] CHEN T, CHEN H. Approximation capability to function of several variable non linear functionals and operators by radial basis function neural network[J]. IEEE Transaction on Neural Network, 1995, 6(4):904-910.
[14] FRANK R. Scattered data interpolation:tests of some methods[J]. Mathematics of Computation, 1982, 38:191-200.
[15] 缪报通, 陈发来. 径向基函数神经网络在散乱数据差值中的应用[J]. 中国科学技术大学学报, 2001, 31(2):135-142. MIU B T, CHEN F L. Applications of radius basis function neural networks in scattered data interpolation[J]. Journal of University of Science and Technology of China, 2001, 31(2):135-142 (in Chinese).
[16] 宋少云, 李世其. 耦合场协同仿真中节点载荷插值的混合法[J]. 计算机仿真, 2006, 23 (8):73-75. SONG S Y, LI S Q. Mixed method of node load interpolation in collaborative simulation of coupled problem[J]. Computer Simulation, 2006, 23(8):73-75 (in Chinese).
[17] 叶正寅, 张伟伟, 史爱明. 流固耦合力学基础及其应用[M]. 哈尔滨:哈尔滨工业大学出版社, 2010. YE Z Y, ZHANG W W, SHI A M. Fundamentals of fluid-structure coupling and its application[M]. Harbin:Harbin Institute of Technology Press, 2010 (in Chinese).
[18] GOURA G S L, BADCOCK K J. A data exchange method for fluid-structure interaction problems[J]. The Aeronautical Journal, 2001, 105(1046):215-221.
[19] WENDLAND H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree[J]. Advances in Computational Mathematics, 1995, 4(1):389-396.
[20] 王武, 冯仰德, 迟学斌. 多层快速多极子方法的快速插值[J]. 计算数学, 2011, 33(2):145-155. WANG W, FENG Y D, CHI X B. Fast interpolation for multilevel fast multipole method[J]. Mathematica Numerica Sinica, 2011, 33(2):145-155 (in Chinese).
[21] KARL F, MICHAEL G. Analyzing overheads and scalability characteristics of OpenMP applications[J]. Lecture Notes in Computer Science, 2007, 4395:39-51.

文章导航

/