高超声速进气道强制转捩流动的大涡模拟
收稿日期: 2016-02-16
修回日期: 2016-06-21
网络出版日期: 2016-06-27
基金资助
国家自然科学基金(11402289)
Large eddy simulation for forced transition flow at hypersonic inlet
Received date: 2016-02-16
Revised date: 2016-06-21
Online published: 2016-06-27
Supported by
National Natural Science Foundation of China (11402289)
吸气式高超声速飞行器常在进气道边界层内布置粗糙颗粒或涡流发生器强制流动转捩为湍流以确保发动机正常启动。为了清晰认识强制转捩过程,采用隐式大涡模拟方法,对强制转捩问题开展了数值模拟研究。针对钻石形和斜坡形涡流发生器,计算得到涡流发生器诱导的流动结构,显示出强制转捩流动由涡流发生器产生的反向旋转流向涡对主导。扰动沿流向增长和发展,导致流向涡对以偶模式或奇模式失稳,偶模式失稳产生对称形式的涡对破碎,而奇模式失稳则导致非对称(弯曲)形式的涡对破碎。流向涡对破碎后产生一系列发卡涡并最终促使边界层转捩为湍流。最后就计算网格和数值耗散对隐式大涡模拟结果的影响以及计算的收敛性进行了讨论。
赵晓慧 , 邓小兵 , 毛枚良 , 杨伟 , 赵慧勇 . 高超声速进气道强制转捩流动的大涡模拟[J]. 航空学报, 2016 , 37(8) : 2445 -2453 . DOI: 10.7527/S1000-6893.2016.0200
Forced transition is commonly used for a hypersonic air breathing vehicle to ensure its scramjet's normal start by placing roughness elements or vortex generators in the inlet boundary layer. To get a clear image of forced transition process, an implicit large eddy simulation method is used for laminar-turbulent forced transition flows in the boundary layer of a hypersonic inlet configuration. Main structures are obtained for the forced transition flows induced by the vortex generators shaped of diamonds and ramps, which show that the flows are dominated by stream-wise counter-rotating vortices. Fluctuations grow in the stream-wise direction and cause instabilities. Two fundamental modes of the instabilities are found in the simulations, the even mode and the odd one. The even mode leads to a varicose way of breaking down of the counter-rotating vortices, while the odd one leads to a sinuous way. Strings of hairpin vortices are generated after the breaking down and finally cause the transition. A discussion is carried out on the computation convergence together with the influence of the grids and numerical dissipation.
Key words: hypersonic; inlet; forced transition; vortex generator; large eddy simulation
[1] BERRY S A, DARYABEIGI K, WURSTER K. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6):922-934.
[2] KLEBANOFF P S, TIDSTROM K D. Mechanism by which a two-dimensional roughness element induces boundary-layer transition[J]. Physics of Fluids, 1972, 15(7):1173-1188.
[3] RESHOTKO E, TUMIN A. Role of transient growth in roughness-induced transition[J]. AIAA Journal, 2004, 42(4):766-770.
[4] SESCU A, PENDYALAY R K, THOMPSON D. On the growth of G rtler vortices excited by distributed roughness elements:AIAA-2014-2885[R]. Reston:AIAA, 2014.
[5] LI F, MALIK M R. Fundamental and subharmonic secondary instabilities of G rtler vortices[J]. Journal of Fluid Mechanics, 1995, 297:77-100.
[6] LI F, CHOUDHARI M, CHANG C L, et al. Development and breakdown of G rtler vortices in high speed boundary layers:AIAA-2010-705[R]. Reston:AIAA, 2010.
[7] TULLIO N D, PAREDES P, SANDHAM N D, et al. Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer[J]. Journal of Fluid Mechanics, 2013, 735:613-646.
[8] BERRY S A, HORVATH T J. Discrete-roughness transition for hypersonic flight vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(2):216-227.
[9] BERRY S A, AUSLENDER A H, DILLEY A D, et al. Hypersonic boundary layer trip development for Hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6):853-864.
[10] BERRY S A, NOWAK R J, HORVATH T J. Boundary layer control for hypersonic airbreathing vehicles:AIAA-2004-2246[R]. Reston:AIAA, 2004.
[11] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强迫转捩试验[J]. 实验流体力学, 2012, 26(1):1-6. ZHAO H Y, ZHOU Y, NI H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6(in Chinese).
[12] DANEHY P M, BATHEL B, IVEY C, et al. NO PLIF study of hypersonic transition over a discrete hemispherical roughness element:AIAA-2009-0394[R]. Reston:AIAA, 2009.
[13] 冈敦殿, 易仕和, 陈植, 等. 超声速平板上直立圆台突起物绕流流场研究[C]//中国力学大会-2013. 北京:中国力学学会, 2013. GANG D D, YI S H, CHEN Z, et al. Flow field investigations of supersonic flow over a circular protuberance mounted on a flat plate[C]//CCTAM-2013. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[14] 张庆虎. 超声速流动分离及其控制的试验研究[D]. 长沙:国防科学技术大学, 2013. ZHANG Q H. Experimental investigation of supersonic flow separation and its micro-ramp control[D]. Changsha:National University of Defense Technology, 2013(in Chinese).
[15] BORG M P, SCHNEIDER S P. Effect of freestream noise on roughness-induced transition for the X-51A forebody[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1106-1116.
[16] 邓小兵. 来流噪声对高超声速进气道强制转捩的影响[C]//中国力学大会-2013. 北京:中国力学学会, 2013. DENG X B. Freestream noise impact on forced transition of hypersonic boundary layer[C]//CCTAM-2013. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[17] MARXEN O, IACCARINO G, SHAQFEH E S G. Numerical simulations of hypersonic boundary-layer instability with localized roughness:AIAA-2011-0567[R]. Reston:AIAA, 2011.
[18] IYER P S, MUPPIDI S, MAHESH K. Roughness-induced transition in high speed flows:AIAA-2011-0566[R]. Reston:AIAA, 2011.
[19] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by ramp roughness elements:AIAA-2014-2037[R]. Reston:AIAA, 2014.
[20] DUAN Z W, XIAO Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition:AIAA-2014-2495[R]. Reston:AIAA, 2014.
[21] 涂国华, 燕振国, 赵晓慧, 等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报, 2015, 36(5):1471-1479. TU G H, YAN Z G, ZHAO X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aeronautica et Astronautia Sinica, 2015, 36(5):1471-1479(in Chinese).
[22] 周玲, 闫超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6):1487-1495. ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1487-1495(in Chinese).
[23] 周玲, 闫超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4):1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1092-1102(in Chinese).
[24] SAYADI T, MOIN P. Large eddy simulation of controlled transition to turbulence[J]. Physics of Fluids, 2012, 24(11):923-938.
[25] ORLIK E, FEDIOUN I. Hypersonic boundary-layer transition forced by wall injection:A numerical study[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1306-1318.
[26] 邓小兵, 金玲. 让误差飞一会儿——湍流大涡模拟中的动态自适应迎风方法[C]//中国力学大会-2013. 北京:中国力学学会, 2013. DENG X B, JIN L. Let the error fly for a while-A dynamic adaptive upwind method for large eddy simulations of turbulent flow[C]//CCTAM-2013. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013(in Chinese).
[27] 朱自强, 吴子牛, 李津, 等. 应用计算流体力学[M]. 北京:北京航空航天大学出版社, 1998:54-88. ZHU Z Q, WU Z N, LI J, et al. Application of computational fluid dynamics[M]. Beijing:Beihang University Press, 1998:54-88(in Chinese).
[28] JAMESON A. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991.
[29] YOON S, JAMESON A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[30] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers with varying freestream Mach number:AIAA-2010-0353[R]. Reston:AIAA, 2010.
[31] LUND T S, WU X, SQUIRES K D. Generation of turbulent inflow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2):233-258.
[32] EDWARDS J R, CHOI J, BOLES J A. Hybrid LES/RANS simulation of a mach 5 compression-corner interaction:AIAA-2008-0718[R]. Reston:AIAA, 2008.
[33] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649
[34] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[35] GEORGIADIS N J, RIZZETTA D P, FUREBY C. Large-eddy simulation:current capabilities, recommended practices, and future research[J]. AIAA Journal, 2010, 48(8):1772-1784.
/
〈 | 〉 |