高超声速飞行器碳基头锥烧蚀外形计算
收稿日期: 2016-04-20
修回日期: 2016-05-23
网络出版日期: 2016-06-06
基金资助
国家自然科学基金(51506008)
Hypersonic aircraft's carbon-based nose ablation shape calculation
Received date: 2016-04-20
Revised date: 2016-05-23
Online published: 2016-06-06
Supported by
National Natural Science Founsation of China (51506008)
陈自发 , 张晓晨 , 王振峰 , 徐芸 , 徐晓亮 . 高超声速飞行器碳基头锥烧蚀外形计算[J]. 航空学报, 2016 , 37(S1) : 38 -45 . DOI: 10.7527/S1000-6893.2016.0161
Nose ablation shape influences the lift-drag ratio and the stability of a hypersonic aircraft. For the integrated design of long-time gliding aircraft, it is of great significance to evaluate the ablation shape of the nose-tips accurately. The calculation method of nose ablation shape is introduced. Simulation research of hypersonic aircraft's ablation shape is conducted based on this method. The simulation and experimental results of an aircraft nose ablation are in good agreement with each other. The ablation shapes during pitching and rolling motion are compared. Estimation of ablation shapes with flight status has been studied thoroughly. Pitching motion affects the ablation thickness on windward and leeward side, and roll motion affects the ablation position.
Key words: hypersonic; aircraft; carbon-based; nose ablation; shape evolution
[1] 王国雄, 马鹏飞. 弹头技术[M]. 北京:中国宇航出版社, 1993. WANG G X, MA P F. Warhead technology[M]. Beijing:China Astronautic Publishing House, 1993 (in Chinese).
[2] AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation with pyrolysis gas flow using a full newton's method and finite control volume procedure, AIAA-2006-2910[R]. Reston:AIAA, 2006.
[3] AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation with pyrolysis gas flow using a full Newton's method and finite control volume procedure, AIAA-2007-4535[R]. Reston:AIAA, 2007.
[4] 王俊, 裴海龙, 王乃洲. 基于再入轨迹和气动热环境的返回舱烧蚀研究[J]. 航空学报, 2014, 35(1):80-89. WANG J, PEI H J, WANG N Z. Research on ablation for crew return vehicle based on re-entry trajectory and aerodynamic heating environment[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):80-89(in Chinese).
[5] 陆海波, 陈伟芳, 袁雷, 等. 再入体碳基材料烧蚀特性分析与工程计算[J]. 弹道学报, 2008, 20(3):107-110. LU H B, CHEN W F, YUAN L, et al. Ablation analysis and engineering calculation on carbon-based material of reentry vehicles[J]. Journal of Ballistics, 2008, 20(3):107-110 (in Chinese).
[6] 张涛, 陈德江. 再入钝锥体烧蚀热防护内部热响应的数值仿真[J]. 航空动力学报, 2013, 28(10):2248-2255. ZHANG T, CHEN D J. Numerical simulation of internal thermal response of ablative thermal protection for reentry spacecraft[J]. Journal of Aerospace Power, 2013, 28(10):2248-2255 (in Chinese).
[7] HOGGE M, GERREKENS P. Two-dimensional deforming methods for surface ablation:AIAA-1983-1555[R]. Reston:AIAA, 1983.
[8] 杨志斌, 成竹, 蒋军亮. 导弹头锥烧蚀数值模拟[J]. 科学技术与工程, 2009, 9(18):5425-5431. YANG Z B, CHENG Z, JIANG J L. Ablation numerical simulation for the missile taper[J]. Science Technology and Engineering. 2009, 9(18):5425-5431(in Chinese).
[9] KATTE S S, DAS S K, VENKATESHAN S P. Two-dimensional ablation in cylindrical geometry[J]. Journal of Thermophysics & Heat Transfer, 2012, 14(4):548-556.
[10] HOGAN R E, BLACKWELL B F,COCHRAN R J. Numerical solution of two-dimensional ablation problems using the finite control volume method with unstructured grids:AIAA-1994-2085[R]. Reston:AIAA, 1994.
[11] ZHANG T, SUN B. Numerical simulation research on axis-symmetrical ablative thermal protection for spacecraft in whole reentry[J]. Journal of Astronautics, 2011, 32(5):1198-1204.
[12] 国义军, 石卫波. 带芯子的碳-碳端头烧蚀外形计算[J].空气动力学学报, 2001, 19(1):24-29. GUO Y J, SHI W B. Calculation of ablation shape change of carbon-carbon nosetip with a core[J]. Acta Aerodynamica Sinica, 2001, 19(1):24-29(in Chinese).
[13] 国义军, 石卫波, 石义雷, 等. 电弧加热器试验条件下端头烧蚀外形计算[J]. 空气动力学学报, 2002, 20(1):115-121. GUO Y J, SHI W B, SHI Y L, et al. Numerical simulation of nosetip shape change during ablation on arc heater[J]. Acta Aerodynamica Sinica, 2002, 20(1):115-121(in Chinese).
[14] 陈小庆, 侯中喜, 刘建霞. 高超声速滑翔飞行器倾斜转弯分析及控制系统设计[J]. 国防科技大学学报, 2012, 34(3):17-23. CHEN X Q, HOU Z X, LIU J X. Analysis and controller design of bank-to-turn system for hypersonic gliding vehicle[J]. Journal of National University of Defense Technology, 2012, 34(3):17-23 (in Chinese).
[15] ZEMLYANSKY B A. Methods for calculation of heat transfer to a surface of flight vehicles in 2D and 3D flows[R]. TSNⅡMasH, 1992.
/
〈 | 〉 |