临近空间飞行器推进系统预冷器关键技术
收稿日期: 2016-04-27
修回日期: 2016-05-26
网络出版日期: 2016-06-03
基金资助
中国航发2015年科技创新基金
Key technology for pre-cooler in near space vehicle propulsion system
Received date: 2016-04-27
Revised date: 2016-05-26
Online published: 2016-06-03
Supported by
AECC Science and Technology lnncation Fund.2015
临近空间由于其在现代战争中的重要战略意义已成为各国航空航天领域的研究重点,高超声速飞行器更是国家临近空间军事实力的一个重要标志。由于吸气式高超声速飞行器具有较高的飞行高度与马赫数,预冷技术已成为高超声速飞行器推进系统中的一项关键技术,而高性能预冷器设计是预冷技术的一个重要研究方向,预冷器的可靠性与流动传热特性是预冷系统的重要影响参数,对于紧凑、高效、高可靠性先进预冷器的研究具有十分重要的意义。基于目前公开的临近空间高超声速飞行器的主要动力形式及其对预冷技术的刚性需求,对预冷器设计中的关键技术与发展方向做了详细的阐述。
关键词: 临近空间; 高超声速飞行器; 推进系统; 涡轮基组合循环(TBCC); 预冷器
吕多 , 陆海鹰 , 周建军 , 尚守堂 , 于霄 . 临近空间飞行器推进系统预冷器关键技术[J]. 航空学报, 2016 , 37(S1) : 119 -126 . DOI: 10.7527/S1000-6893.2016.0164
Due to the strategic importance of near space in modern warfare, near space hypersonic vehicles represent a country's military capacity and has become a research focus for the field of aeronautics and astronotics. Pre-cooling technology has become a key technology for the propulsion system of air-breathing hypersonic near space vehicles with high flight altitude and mach number, and advanced heat exchangers are critical components of the pre-cooling system for hypersonic near space vehicle. The reliability as well as the heat transfer and pressure loss performance of the pre-cooler are all important influencing parameters of the pre-cooling system. The research on advanced heat exchangers of high reliability and heat transfer performance is of great significance for the propulsion system of near space vehicles. Based on the published data of major driving force of the near space hypersonic flight vehicle and the rigid demand of the flight for cooling technology, the key technology and future development orientation for the pre-cooler used in hypersonic near space vehicles has been discussed.
[1] BALEPIN V. Advances on propulsion technology for high-speed aircraft[J]. High Speed Propulsion Cycles, 2008, 3(2):1-32.
[2] TAGUCHI H, UTAMURA H, SHIMODAIRA K, et al. Design study on hypersonic engine components for TBCC space planes:AIAA-2003-7006[R]. VIRGINIA:AIAA, 2003.
[3] TAGUCHI H, FUTAMURA H, YANAGI R, et al. Analytical study of pre-cooled turbojet engine for TSTO space plane:AIAA-2001-1838[R]. Reston:AIAA, 2001.
[4] 陈大光.高超声速飞行与TBCC方案简介[J].航空发动机, 2006, 32(3):10-13. CHEN D G. Brief introduction of hypersonic flight and TBCC concept[J]. Aeroengine, 2006, 32(3):10-13 (in Chinese).
[5] LONGSTAFF R, BOND A. The SKYLON project:AIAA-2011-2244[R]. Reston:AIAA, 2011.
[6] SATO T, KOBAYASHI H, TANATSUGU N, et al. Development study of the pre-cooler of ATREX engine:AIAA-2003-6985[R]. Reston:AIAA, 2003.
[7] GRAHAM C, HEATH J, CHRISTOPHER A, et al. Analysis of modal growth on the leeward centerplane of the X-51 vehicle:AFRL-RB-WP-TM-2010-3001[R]. Minnesota:AFRL, 2010.
[8] TREFNY C J, ROCHE J M. Performance validation approach for the GTX air-breathing launch vehicle:NASA/TM-2002-211495[R]. Washington, D.C.:NASA, 2002.
[9] PRESTON C, VLADIMIR B, TERRY S, et al. MIPCC technology development:AIAA-2003-6929[R]. Reston:AIAA, 2003.
[10] JUNE K M, JI H J, MAN Y H, et al. High temperature heat exchanger studies for applications to gas turbines[J]. Heat Mass Transfer, 2009, 32(46):175-186.
/
〈 | 〉 |