材料工程与机械制造

低速冲击对K-cor夹层结构力学性能的影响

  • 沈裕峰 ,
  • 李勇 ,
  • 还大军 ,
  • 王鑫
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016
沈裕峰,男,硕士研究生。主要研究方向:复合材料三维增强。Tel.:025-84892980,E-mail:shenyf@163.com;李勇,男,博士,教授,博士生导师。主要研究方向:先进复合材料制造。Tel.:025-84892980,E-mail:lyong@nuaa.edu.cn

收稿日期: 2016-01-15

  修回日期: 2016-05-26

  网络出版日期: 2016-05-30

基金资助

航空科学基金(2015ZE52049);南京航空航天大学研究生创新基地开放基金(kfjj20150602)

Effect of low-velocity impact on mechanical properties of K-cor sandwich structure

  • SHEN Yufeng ,
  • LI Yong ,
  • HUAN Dajun ,
  • WANG Xin
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-01-15

  Revised date: 2016-05-26

  Online published: 2016-05-30

Supported by

Aeronautical Science Foundation of China (2015ZE52049); Project supported by the Foundation of Graduate Innovation Center in NUAA (kfjj20150602)

摘要

K-cor夹层结构是应用Z-pin技术增强的一种新型高性能夹层结构,本文基于落锤冲击实验对低速冲击下K-cor夹层结构的力学性能进行了研究,结合红外无损检测和冲击后压缩强度(CAI)试验,对不同Z-pin植入参数和芯材厚度对K-cor试样的冲击损伤阻抗进行了深入研究。研究结果表明:K-cor夹层结构的芯材越厚,则其冲击损伤面积越大,但剩余压缩强度比越高;在不超过植入间距的前提下,增加Z-pin的折弯长度能显著的降低K-cor结构冲击后的损伤面积,提高压缩强度;在相同芯材密度的情况下,提高Z-pin的折弯长度比增大植入密度更有利于减少K-cor试样冲击后的损伤面积,提高试样的压缩强度和其剩余压缩强度比。

本文引用格式

沈裕峰 , 李勇 , 还大军 , 王鑫 . 低速冲击对K-cor夹层结构力学性能的影响[J]. 航空学报, 2016 , 37(12) : 3853 -3863 . DOI: 10.7527/S1000-6893.2016.0166

Abstract

K-cor sandwich structure is a new type of high-performance foam structure reinforced by Z-pinning techniques. By using drop hammer test, as well as infrared non-destructive testing and compression-after-impact (CAI) strength test, this paper studies the shock resistance of K-cor structure with changing parameters of Z-pin and core thickness under low velocity impact. Experimental results indicate that the thicker the core is, the larger the impact damage area is, and the higher the compression strength retention is. When the increase of the bending length of Z-pin is not more than the implanted spacing, the impacted damage area of K-cor structure can be significantly reduced, and the compression-after-impact strength can be enhanced. When the density of the core is the same, improving the bending length of Z-pin, rather than the implanted density, can reduce the damage area and increase the ratio of compression-after-impact strength to strength retention of the sample.

参考文献

[1] SEIBERT H. Applications for PMI foams in aerospacesandwich structures[J]. Reinforced Plastics, 2006, 50(1):44-48.
[2] 张纪奎, 郦正能, 寇长河. 大展弦比复合材料机翼结构设计研究[J]. 航空学报, 2005, 26(4):450-453. ZHANG J K, LI Z N, KOU C H. Structural design of high aspect ratio composite material wing[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4):450-453(in Chinese).
[3] 李涛, 陈蔚, 成理, 等. 泡沫夹层结构复合材料的应用与发展[J]. 科技创新导报, 2009, 14:3-5. LI T, CHEN W, CHENG L, et al. The development and application of foam sandwich structural composites[J]. Science and Technology Innovation Herald, 2009, 14:3-5(in Chinese).
[4] 李朝光, 矫桂琼, 黄涛, 等. Z向增强复合材料层压板冲击后压缩性能试验研究[J]. 机械强度, 2010, 32(3):373-377. LI C G, JIAO G Q, HUANG T, et al. Experimental study on the compression after impact propertiesof Z-reinforced composite laminates[J]. Journal of Mechanical Strength, 2010, 32(3):373-377(in Chinese).
[5] INES I, SONIA S S. Numerical modelling of the low-velocity impact response of composite sandwichbeams with honeycomb core[J]. Composite Structures, 2013, 106:716-723.
[6] 谢宗蕻, 刘海涵, 田江. 复合材料泡沫夹层板准静态压痕实验的有限元模拟[J]. 材料工程, 2014(2):13-17. XIE Z H, LIU H H, TIAN J. Finite element simulation of quasi-static indentation tests on foam coresandwich composites[J]. Journal of Materials Engineering, 2014(2):13-17(in Chinese).
[7] 王杰. 复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究[D]. 上海:上海交通大学, 2013:65-78. WANG J. Study on the low-velocity impact and compression-after-impact behavior of foam-core sandwich panels[D]. Shanghai:Shanghai Jiao Tong University, 2013:65-78(in Chinese).
[8] LIU J Y, ZHU X, LI T Y, et al. Experimental study on the low velocity impact responses of all composite pyramidal truss core sandwich panel after high temperature exposure[J]. Composite Structures, 2014, 116:670-681.
[9] 万玉敏, 张发, 竺铝涛. 泡沫夹层复合材料与复合材料层合板低速冲击性能的比较[J]. 机械工程材料, 2014(7):90-94, 98. WAN Y M, ZHANG F, ZHU L T. Comparison of low-velocity impact properties between foamsandwich composites and composite laminates[J]. Materials for Mechanical Engineering, 2014(7):90-94, 98(in Chinese).
[10] ALI K, MEHMET S, HALIL M E, et al. Effect of impactor shapes on the low velocity impact damageof sandwich composite plate:Experimental study and modelling[J]. Composites Part B:Engineering, 2016, 86:143-151.
[11] ZHENG Y Y, XIAO J, DUAN M F, et al. Experimental study of partially-cured Z-pins reinforced foam core composites:K-Cor sandwich structures[J]. Chinese Journal of Aeronautics, 2014, 27(1):153-159.
[12] 褚奇奕, 肖军, 李勇, 等. 碳纤维增强环氧Z-pin拔脱性能[J]. 航空学报, 2015, 36(4):1312-1319. CHU Q Y, XIAO J, LI Y, et al. Pullout performance of carbon fiber/epoxy Z-pins[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1312-1319(in Chinese).
[13] 段友社, 郭书良, 吴刚, 等. Z向增强泡沫夹芯复合材料冲击损伤及冲击后压缩性能[J]. 复合材料学报, 2012, 29(2):180-185. DUAN Y S, GUO S L, WU G, et al. Impact damage chaaracteristics and postimpact compressive properties of Z-reinforcement foam core sandwich composites[J]. Acta Materiae Compositae Sinica, 2012, 29(2):180-185(in Chinese).
[14] NANAYAKKARA A, FEIH S, MOURITZ A P. Experimental impact damage study of a Z-pinned foam core sandwich composite[J]. Journal of Sandwich Structures and Materials, 2012, 14(4):469-486.
[15] ZHOU J, GUAN Z W, CANTWELL W J, et al. The energy-absorbing behaviour of foam cores reinforced with composite rods[J]. Composite Structures,2014, 116:346-356.
[16] PENG Y, SHAMS S S, SLAY A, et al. Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores[J]. Composite Structures, 2015, 129:213-223.
[17] PARTRIDGE I K, CARTI D D R, BONNINGTON T. Manufacture and performance of Z-pinned composites[C]//ADVANI S, SHONAIKE G. Advanced polymeric materials:structureproperty relationships. Boca Raton:CRC, 2003.
[18] BARAL N, CARTIE D D R, PARTRIDGE I K, et al. Improved impact performance of marine sandwi-ch panels using through-thickness reinforcement:experimental results[J]. Composites Part B:Engineering, 2010, 41(2):117-123.
[19] 李晓霞, 伍耐明, 段玉霞, 等. 碳纤维层合板低速冲击后的红外热波检测分析[J]. 复合材料学报, 2010, 27(6):88-93. LI X X, WU N M, DUAN Y X, et al. Infrared thermal wave imaging for carbon fiber laminated boards after low velocity impact[J]. Acta Materiae Compositae Sinica, 2010, 27(6):88-93(in Chinese).
[20] 余轶, 刘伟庆, 万里, 等. 红外热波法检测夹层结构内部缺陷的研究[J]. 玻璃钢/复合材料, 2013(8):55-59, 8. YU Y, LIU W Q, WAN L, et al. Assessment for placement suitability of prepregpart of drape[J]. Fiber Reinforced Plastics/Composites, 2013(8):55-59, 8(in Chinese).
[21] 沈真, 杨胜春, 陈普会. 复合材料抗冲击性能和结构压缩设计许用值[J]. 航空学报, 2007, 28(3):561-566. SHEN Z, YANG S C, CHEN P H. Behaviors of composite materials to withstand impact and structural compressive design allowableness[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):561-566(in Chinese).
[22] 张广成, 何祯, 刘良威, 等. 夹层结构复合材料低速冲击试验与分析[J]. 复合材料学报, 2012, 29(4):170-177. ZHANG G C, HE Z, LIU L W, et al. Low-velocity impact experiment and analysis of sandwich structure composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4):170-177(in Chinese).

文章导航

/