利用受限张力的拖曳变轨欠驱动姿态稳定策略
收稿日期: 2016-01-13
修回日期: 2016-05-08
网络出版日期: 2016-05-13
基金资助
国家自然科学基金(61005062,11272256);中央高校基本科研业务费专项资金(3102014JCQ01005);西北工业大学研究生创意创新种子基金(Z2016050)
Underactuated attitude stabilization for space tethered towing using constrained tension
Received date: 2016-01-13
Revised date: 2016-05-08
Online published: 2016-05-13
Supported by
National Natural Science Foundation of China (61005062, 11272256); the Fundamental Research Funds for the Central Universities (3102014JCQ01005); Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Z2016050)
在空间绳系拖曳变轨中,目标和平台形成一种哑铃型绳系系统,且仅依靠有限的平台推力和系绳张力来抑制系绳的摆动。针对此类输入受限的欠驱动控制问题,提出了一种利用受限张力的姿态稳定策略。首先,推导了组合体姿态动力学模型。然后通过数值求解姿态平衡方程得出理论面内姿态指令,再采用高斯伪谱法对其优化获得实际指令。最后,基于分层滑模理论设计欠驱动张力控制律,并嵌入抗饱和模块以缓解张力饱和。仿真表明空间平台能在正向有限的张力控制下,平滑地收放系绳使面内角和绳长跟踪实际姿态指令。此外,所提策略对目标体摆动和传感器误差也具有良好的鲁棒性。
王秉亨 , 孟中杰 , 黄攀峰 . 利用受限张力的拖曳变轨欠驱动姿态稳定策略[J]. 航空学报, 2016 , 37(12) : 3783 -3792 . DOI: 10.7527/S1000-6893.2016.0144
During space tethered towing, the target and the space platform constitute a dumbbell-like tethered system, which only relies on the limited platform thrusts and tether tension to suppress the tether libration. An effective attitude stabilization strategy using bounded tension is proposed for such an underactuated system subject to input constraints. The dynamic model governing the attitude of the system is established. By solving the in-plane equilibrium equation numerically, the theoretical in-plane attitude commands are obtained, which are then optimized using Gauss pseudospectral method. The actual in-plane commands are thus yielded. An underactuated tension controller is designed based on hierarchical sliding mode theory, and an anti-windup auxiliary module is embedded to mitigate the tension saturation. Simulation results show that under the positive and constrained tension control, the tether can be deployed and retrieved smoothly by the platform, making the in-plane angle and tether length track the actual commands appreciably. The proposed strategy is also robust to the target swing and sensor errors.
[1] ANDERSON K S, HAGEDOM P. Control of orbital drift of geostationary tethered satellites[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):10-14.
[2] MOSS R. Tether-payload transfer between circular orbits[C]//Proceedings of AIAA Joint Propulsion Conference. Reston:AIAA, 1990:1-9.
[3] NO T S, COCHRAN J E. Dynamics and control of a tethered flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(1):66-72.
[4] WANG B H, MENG Z J, HUANG P F. A towing orbit transfer method of tethered space robots[C]//Proceeding of the 2015 IEEE Conference Robotics and Biomimetics. Piscataway, NJ:IEEE Press, 2015:964-969.
[5] LIU H T, YANG L P, ZHANG Q B, et al. An investigation on tether-tugging de-orbit of defunct geostationary satellites[J]. Science China Technological Sciences, 2012, 55(7):2019-2027.
[6] SUN L, ZHAO G W, HUANG H, et al. Tether-dragging maneuver strategy and tether control method[C]//Proceedings of 2010 Asian-Pacific International Symposium on Aerospace Technology. Beijing:CSAA, 2010:719-723.
[7] ZHAO G W, SUN L, TAN S P, et al. Librational characteristics of a dumbbell modeled tethered satellite under small, continuous, constant thrust[J]. Journal of Aerospace Engineering, 2012, 227(5):857-872.
[8] 孙亮, 赵国伟, 黄海, 等. 面内轨道转移过程中的绳系系统摆振特性研究[J]. 航空学报, 2012, 33(7):1245-1254. SUN L, ZHAO G W, HUANG H, et al. Analysis of librational and vibrational characteristics for tethered system during orbital transfer in plane[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1245-1254(in Chinese).
[9] SUN L, ZHAO G W, HUANG H. Stability and control of tethered satellite with chemical propulsion in orbital plane[J]. Nonlinear Dynamics, 2013, 74(4):1113-1131.
[10] CHO S B, MCCLAMROCH N H. Optimal orbit transfer of a spacecraft with fixed length tether[J]. The Journal of the Astronautical Sciences, 2003, 51(2):195-204.
[11] 钟睿, 徐世杰. 基于直接配点法的绳系卫星系统变轨控制[J]. 航空学报, 2010, 31(3):572-578. ZHONG R, XU S J. Orbit transfer control for TSS using direct collocation method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):572-578(in Chinese).
[12] 刘海涛, 张青斌, 杨乐平, 等. 绳系拖曳离轨过程中的摆动抑制策略[J]. 国防科技大学学报, 2014, 36(6):164-170. LIU H T, ZHANG Q B, YANG L P, et al. Oscillation suppression strategy during tether-tugging reorbiting[J]. Journal of National University of Defense Technology, 2014, 36(6):164-170(in Chinese).
[13] WEN H, ZHU Z H, JIN D P, et al. Constrained tension control of a tethered space-tug system with only length measurement[J]. Acta Astronautica, 2016, 119:110-117.
[14] WILLIAMS P. Deployment/retrieval optimization for flexible tethered satellite systems[J]. Nonlinear Dynamics, 2008, 52(2):159-179.
[15] HU Q L. Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits[J]. Nonlinear Dynamics, 2009, 55(4):301-321.
[16] ZHU Z, XIA Y Q, FU M Y. Adaptive sliding mode control for attitude stabilization with actuator saturation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4989-4906.
[17] XIAO B, HU Q L, ZHANG Y M. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[J]. IEEE Transactions on Control System Technology, 2012, 20(6):1605-1612.
[18] 时建明, 王洁, 叶继坤, 等. 吸气式高超声速飞行器输入受限自适应反演控制[J]. 固体火箭技术, 2012, 35(5):573-577. SHI J M, WANG J, YE J K, et al. Adaptive backstepping control for an air-breathing hypersonic vehicle with input constraints[J]. Journal of Solid Rocket Technology, 2012, 35(5):573-577(in Chinese).
[19] 尹佳杰, 都延丽. 近空间飞行器再入段的输入受限滑模姿态控制研究[C]//第32届中国控制会议. 北京:中国自动化学会, 2013:1064-1069. YIN J J, DU Y L. Sliding mode attitude control with input constraints for near space vehicles in reentry phase[C]//Proceedings of the 32nd Chinese Control Conference. Beijing:Chinese Association of Automation, 2013:1064-1069(in Chinese).
[20] HUANG P F, WANG D K, XU X D, et al. Coordinated control of tethered space robot using releasing characteristic of space tether[C]//Proceeding of the 2015 IEEE Conference on Robotics and Biomimetics. Piscataway, NJ:IEEE Press, 2015:1542-1547.
/
〈 | 〉 |