考虑飞机排放因素的飞机巡航性能参数优化方法
收稿日期: 2015-11-20
修回日期: 2016-04-11
网络出版日期: 2016-05-03
基金资助
国家“863”计划(2014AA110501);国家自然科学基金(U1533116,21407174);航空科学基金(20140267002);天津市应用基础与前沿技术研究计划(14JCQNJC08100)
Optimization method of aircraft cruise performance parameters considering pollution emissions
Received date: 2015-11-20
Revised date: 2016-04-11
Online published: 2016-05-03
Supported by
National High-tech Research and Development Program of China (2014AA110501); National Natural Science Foundation of China (U1533116, 21407174); Aeronautical Science Foundation of China (20140267002); Tianjin Research Program of Application Foundation and Advanced Technology (14JCQNJC08100)
巡航是民航飞机主要的飞行阶段,航班飞行中绝大多数的燃油消耗、飞行时间和污染物排放均发生在该阶段。基于国际民航组织(ICAO)基准排放数据和BM2方法,建立了污染物排放量和排放成本计算模型;提出污染物排放价格权重、成本指数排放因子和综合成本指数概念,以改进飞行成本计算模型,考虑污染物排放对飞行成本优化的影响;通过计算分析输入成本指数对性能参数和飞行成本的影响,建立了基于搜索方法的综合成本指数优化流程,并采用Visual Studio予以开发实现;然后计算了综合成本指数飞行的经济效益,以及飞机质量、成本指数和巡航高度对飞行成本的影响。结果表明,选择合适的综合成本指数和巡航高度,可使总飞行成本达到最小,提高运行经济性。与传统巡航相比,在典型情况下采用综合成本指数巡航可以降低相同条件下的总飞行成本的0.15%。
魏志强 , 张文秀 , 韩博 . 考虑飞机排放因素的飞机巡航性能参数优化方法[J]. 航空学报, 2016 , 37(11) : 3485 -3493 . DOI: 10.7527/S1000-6893.2016.0119
Cruise is the main flight phase for civil aircraft, and most of the fuel consumption, flight time and pollutants are consumed or produced in this phase. The pollutant emission calculation model and emission cost model are established based on the International Civil Aviation Organization (ICAO) basic emission data and BM2 methods. In order to consider the effect of pollution emission, the concepts of price weight for pollution emission, cost index emission factor and integrated cost index are proposed in this paper to improve the total flight cost model. Due to calculating and analyzing the influence of inputted cost index on flight cost, the optimum flow chart for calculating integrated cost index is established based on optimum search method. The emission calculation software is developed by Visual Studio for calculating the economic income for cruise flight using integrated cost index. Meanwhile, based on result data calculated by the software, the impacts of initial cruise mass, cost index and cruise altitude on flight cost are also analyzed. The results show that the flight cost can achieve the minimum by choosing adequate integrated cost index and cruise altitude, as other conditions are constant. Compared with traditional flight mode, the total flight cost can decrease 0.15% at given flight condition.
[1] 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2):332-350. ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):332-350(in Chinese).
[2] MALINA R, MCCONNACHIE D, WINCHESTER N, et al. The impact of the european union emissions trading scheme on US aviation[J]. Journal of Air Transport Management, 2012, 19(3):36-41.
[3] ICAO. Engine exhaust emissions data bank:Doc 9646-AN/943[R]. Montreal:ICAO, 2009.
[4] TAMARA P, ROBERT B. Estimates of UK CO2 emissions from aviation using air traffic data[J]. Climatic Change, 2007, 88(3-4):367-384.
[5] PHAM V, TANG J, ALAM S, et al. Aviation emission inventory development and analysis[J]. Environmental Modelling & Software, 2010, 25(12):1738-1753.
[6] OWEN B, LEE D S, LIM L. Flying into the future:Aviation emissions scenarios to 2050[J]. Environmental Science Technology, 2010, 44(10):2255-2260.
[7] 魏志强, 王超. 航班飞行各阶段污染物排放量估算方法[J]. 交通运输工程学报, 2010, 10(6):48-52. WEI Z Q, WANG C. Estimating method of pollution emissions for scheduled flight in different phases[J]. Journal of Traffic and Transportation Engineering, 2010, 10(6):48-52(in Chinese).
[8] 魏志强, 刁华智, 韩博. 民用飞机巡航阶段污染物排放量计算研究[J]. 科学技术与工程, 2014, 14(19):1617-1815. WEI Z Q, DIAO H Z, HAN B. Research on calculating of aircraft pollution emissions in cruise phase[J]. Science Technology and Engineering, 2014, 14(19):1617-1815(in Chinese).
[9] SINGH R. Cost-based flight technique optimization for hybrid energy aircraft[J]. Aircraft Engineering & Aerospace Technology, 2014, 86(6):591-598.
[10] MIYAZAWA Y, HARADA A, WICKRAMASINGHE N K, et al. Effect of jet passenger aircraft performance model on the optimal periodic cruise maneuver[J]. Space Technology Japan the Japan Society for Aeronautical & Spaceences, 2013, 12:99-105.
[11] ERZBERGER H, LEE H. Constrained optimum trajectories with specified range[J]. Journal of Guidance Control & Dynamics, 2012, 3(1):78-85.
[12] FRANCO A, RIVAS D. Minimum-cost cruise at constant altitude of commercial aircraft including wind effects[J]. Journal of Guidance Control & Dynamics, 2011, 34(4):1253-1260.
[13] VALENZUELA A, RIVAS D. Optimization of aircraft cruise procedures using discrete trajectory patterns[J]. Journal of Aircraft, 2014, 51(51):1632-1640.
[14] SRIDHAR B, GRABBE S. Optimizing aircraft trajectories with multiple cruise altitudes in the presence of winds[J]. Journal of Aerospace Information Systems, 2014, 11(1):35-47.
[15] 杨杰, 薛建平, 王发威, 等. 大型运输机巡航航迹优化方案建模与分析[J]. 飞行力学, 2012, 30(4):314-317. YANG J, XUE J P, WANG F W, et al. Cruise trajectory optimization modeling and analysis for large transport[J]. Flight Dynamics, 2012, 30(4):314-317(in Chinese).
[16] WEI Z Q, WANG C, LIU F. Calculation of long range cruise performance based on the BADA model[C]//ICCTP 2010:Integrated Transportation Systems:Green, Intelligent, Reliable, 2010:1097-1103.
[17] 王超, 郭九霞, 沈志鹏. 基于基本飞行模型的4D航迹预测方法[J]. 西南交通大学学报, 2009, 44(2):295-300. WANG C, GUO J X, SHEN Z P. Prediction of 4D trajectory based on basic flight models[J]. Journal of Southwest Jiaotong University, 2009, 44(2):295-300(in Chinese).
[18] SCHUMANN U, GRAF K, MANNSTEIN H. Potential to reduce the climate impact of aviation by flight level changes[C]//3rd AIAA Atmosphere Space Environments Conference. Reston:AIAA, 2011.
[19] KAISER M, ROSENOW J, FRICKE H, et al. Tradeoff between optimum altitude and contrail layer to ensure maximum ecological en-route performance using the enhanced trajectory prediction model (ETPM)[C]//International Conference on Application and Theory of Automation in Command and Control Systems, 2012:127-134.
[20] GREWE V, FRÖMMING C, JÖCKEL P, et al. Climate cost functions as a basis for climate optimized flight trajectories[C]//Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013), 2013.
[21] COOK A, TANNER G, WILLIAMS V, et al. Dynamic cost indexing managing airline delay costs[J]. Journal of Air Transport Management, 2010:26-35.
/
〈 | 〉 |