窄条翼导弹俯仰机动中滚转失稳及其控制过程
收稿日期: 2016-02-16
修回日期: 2016-03-28
网络出版日期: 2016-04-12
基金资助
国家自然科学基金(91216203,11372336,11532016)
Roll instability and control during pitching maneuver for a missile with strake wings
Received date: 2016-02-16
Revised date: 2016-03-28
Online published: 2016-04-12
Supported by
National Natural Science Foundation of China (91216203, 11372336, 11532016)
窄条翼布局导弹通常具有复杂的横向气动特性,在大迎角飞行及快速机动中很容易诱发出现滚转非指令偏离和连续振荡,可能导致飞行失控,影响落点精度。为了研究窄条翼导弹俯仰快速机动对滚转失稳的诱发过程及滚转失稳对俯仰机动控制效果的影响,并验证三通道解耦控制方法的有效性,针对典型俯仰机动过程,分别利用2.4 m跨声速风洞虚拟飞行试验平台和耦合气动/运动/控制的一体化数值计算方法开展了相关研究。结果表明,风洞试验和数值模拟均成功预测了俯仰拉起和保持过程中的滚转自激失稳运动及其引起的纵、横向耦合运动,针对该机动过程,三通道解耦控制方法能够有效抑制滚转运动,保持姿态稳定。
王晓冰 , 赵忠良 , 李浩 , 达兴亚 , 陶洋 . 窄条翼导弹俯仰机动中滚转失稳及其控制过程[J]. 航空学报, 2016 , 37(8) : 2517 -2524 . DOI: 10.7527/S1000-6893.2016.0101
The aerodynamic characteristics in roll of the missile with strake wings are always complicated, which can easily cause the non-directive deviation and oscillation and may lead to losing control of flight and impairing target accuracy. Investigations using the virtual flight testing system in 2.4 m transonic wind tunnel are conducted to study the interplay of roll instability and the longitudinal closed-loop control, and numerical simulation is also performed using the integrative method by aerodynamic/motion/control coupling. The results show that both wind tunnel test and numerical simulation predict the non-directive rolling motion and the pitch/roll coupled motion and prove that the decoupled control method can effectively inhibit the rolling motion and maintain a steady flight.
[1] ALLEN J M. Aerodynamics of an axisymmetric missile concept having cruciform strakes and in-line tail fins from Mach 0.60 to 4.63:NASA/TM-2005-213541[R]. Washington, D.C.:NASA, 2005.
[2] 达兴亚, 赵忠良, 陶洋. 窄条翼导弹模型摇滚特性试验研究[J]. 实验流体力学, 2012, 26(6):40-43. DA X Y, ZHAO Z L, TAO Y. Experimental investigation on free-to-roll motion of strake missile[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):40-43(in Chinese).
[3] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests:Virtual flight testing (VFT):AIAA-1995-3875[R]. Reston:AIAA, 1995.
[4] RATLIFF C L, MARQUART E J. An assessment of a potential test technique:Virtual flight testing (VFT):AIAA-1995-3415[R]. Reston:AIAA, 1995.
[5] GEBERT G, KELLY J, LOPEZ J. Wind tunnel based virtual flight testing:AIAA-2000-0829[R]. Reston:AIAA, 2000.
[6] PATTINSON J, LOWENBERG M H. A multi-degree-of-freedom rig for the wind tunnel determination of dynamic data[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2009.
[7] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012:17-21. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012:17-21(in Chinese).
[8] 赵忠良, 吴军强, 李浩, 等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016, 37(2):504-512. ZHAO Z L, WU J Q, LI H, et al. Investigations of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):504-512(in Chinese).
[9] 李浩, 赵忠良, 陶洋. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学, 2011, 25(6):72-76. LI H, ZHAO Z L, TAO Y. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):72-76(in Chinese).
[10] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:18-25. YAN C. The methodology and application of computational fluid dynamics[M]. Beijing:Beihang University Press, 2006:18-25(in Chinese).
[11] SCHULTE A, EINARSSON G, RAICHLE A, et al. Numerical simulation of maneuvering aircraft by aerodynamic, flight mechanics and structural mechanics coupling:AIAA-2007-1070[R]. Reston:AIAA, 2007.
[12] SCHWARZ T. RANS simulations with one and six degrees of freedom rigid body motions[J]. New Results in Numerical and Experimental Fluid Mechanics VI, 2007, 96:176-185.
[13] ALLAN M R, BADCOCK K J, RICHARDS B E. Numerical CFD based simulation of longitudinal flight mechanics with control[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[14] JOHN P D, JAMES D C, DAVID J B, et al. High resolution CFD simulation of maneuvering aircraft using the CREATE-AV/Kestrel solver:AIAA-2011-1109[R]. Reston:AIAA, 2011.
[15] DAVID R M, DAVID R S, TODD R T, et al. Aerodynamic control surface implementation in Kestrel v2.0:AIAA-2011-1175[R]. Reston:AIAA, 2011.
[16] SCOTT A M, TIMOTHY A E, STEVEN L, et al. Relative motion simulation using an overset multimesh paradigm with Kestrel v3:AIAA-2012-0712[R]. Reston:AIAA, 2012.
[17] SAHU J, HEAVEY K R. Parallel CFD computations of projectile aerodynamics with a flow control mechanism[J]. Computers & Fluids, 2013, 88(12):678-687.
[18] 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2):169-176. TAO Y, FAN Z L, WU J F. CFD based virtual flight simulation of square crosssection missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):169-176(in Chinese).
[19] 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[20] 席柯, 袁武, 阎超, 等. 基于闭环控制的带翼导弹虚拟飞行数值模拟[J]. 航空学报, 2014, 35(3):634-642. XI K, YUAN W, YAN C, et al. CFD based virtual flight simulation of the basic finner projectile with closed loop[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):634-642(in Chinese).
/
〈 | 〉 |