材料工程与机械制造

Z-pin增强复合材料帽型单加筋板弯曲性能

  • 李吻 ,
  • 李勇 ,
  • 还大军 ,
  • 褚奇奕 ,
  • 肖军
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016
李吻,女,硕士研究生。主要研究方向:先进复合材料三维增强技术。Tel.:025-84892980,E-mail:liwen1206@126.com;李勇,男,博士,教授,博士生导师。主要研究方向:先进复合材料自动化制造及工艺。Tel.:025-84892980,E-mail:lyong@nuaa.edu.cn

收稿日期: 2016-01-13

  修回日期: 2016-04-01

  网络出版日期: 2016-04-06

基金资助

航空科学基金(2015ZE52049);国家“973”计划(2014CB046501);江苏高校优势学科建设工程

Bending performance of composite single hat stiffener wall structure reinforced by Z-pin

  • LI Wen ,
  • LI Yong ,
  • HUAN Dajun ,
  • CHU Qiyi ,
  • XIAO Jun
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-01-13

  Revised date: 2016-04-01

  Online published: 2016-04-06

Supported by

Aeronautical Science Foundation of China (2015ZE52049); National Basic Research Program of China (2014CB046501); A Project Funded by the Priority Academic Program Development of Jiangsu High Education Institutions

摘要

针对复合材料帽型加筋壁板结构弯曲承载性能差的缺点,采用Z-pin增强技术提高弯曲承载性能。为研究Z-pin直径、体积分数、增强区长度对复合材料帽型加筋壁板弯曲性能的影响,制备了不同参数的Z-pin增强帽型加筋壁板试样并开展三点弯曲试验,对Z-pin增强机理及试样失效机制进行了分析。结果表明:随着体积分数的增加,由于Z-pin的桥联作用,Z-pin增强帽型加筋壁板弯曲性能提高,同时由于Z-pin植入产生的损伤增加,通过理论分析得到当Z-pin体积分数为2.6%时,弯曲峰值力达到最大值6.1 kN;Z-pin直径对帽型加筋壁板弯曲峰值力影响不显著;当Z-pin增强区长度为总长度的48%时,Z-pin增强帽型加筋壁板弯曲峰值力与全部植入Z-pin时基本相当。

本文引用格式

李吻 , 李勇 , 还大军 , 褚奇奕 , 肖军 . Z-pin增强复合材料帽型单加筋板弯曲性能[J]. 航空学报, 2016 , 37(12) : 3843 -3852 . DOI: 10.7527/S1000-6893.2016.0109

Abstract

The Z-pin reinforcing technology is used to improve the less good bending bearing performance of composite hat stiffener wall structure. In order to study the influence of Z-pin volume fraction, Z-pin diameter and Z-pin reinforcing region length on the performance of hat stiffener wall structure polymer composites, the samples reinforced by Z-pin with different parameters are prepared and tested under three-point bending load. The Z-pin reinforcing mechanism and samples' failure mechanism are analyzed. The results show that the bending property of hat stiffener wall structures reinforced by Z-pin is improved with the increase of Z-pin volume fraction due to the bridging role of Z-pin, and the damage caused by Z-pin inserting increases. When the volume fraction of Z-pin is 2.6%, the bending peak load reaches the maximum value 6.1 kN through theoretical analysis. The effect of the diameter of Z-pin on the bending load of stiffener wall structures is not obvious. When the length of the Z-pin reinforcing region is 48% of the total length, the bending peak load of hat stiffener wall structure reinforced by Z-pin equals the bending peak load of samples with 100% Z-pin inserting length.

参考文献

[1] 韩旭. 帽型复合材料加筋壁板结构优化设计[D]. 南京:南京航空航天大学, 2009:1-5. HAN X. Structure optimization of composite hat-stiffened panel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:1-5(in Chinese).
[2] 李玉成, 温海波, 安静波. 复合材料加筋壁板设计、分析与试验研究[J]. 纤维复合材料, 2011(4):14-18. LI Y C, WEN H B, AN J B. Design, analysis, experimental studies of composite stiffened panel[J]. Fiber Composite, 2011(4):14-18(in Chinese).
[3] KRUEGER R, CVITKOVICH M K, O'BRIEN T K, et al. Testing and analysis of composite skin/stringer debonding under multi-axial loading[J]. Journal of Composite Materials, 2000, 34(15):1263-1300.
[4] KRUEGER R, MINGUET P J. Analysis of composite skin-stiffener debond specimens using a shell/3D modeling technique[J]. Composite Structures, 2007, 81(1):41-59.
[5] BERTOLINI J, CASTANIE B, BARRAU J J, et al. An experimental and numerical study on omega stringer debonding[J]. Composite Structures, 2008, 86(1-3):233-242.
[6] 叶强, 夏翔, 肖闪闪, 等. 复合材料整体加筋板的七点弯曲试验和数值分析[J]. 南京航空航天大学学报, 2011, 43(4):470-474. YE Q, XIA X, XIAO S S, et al. Numerical and experimental analysis on seven-point bending test of integrated composite panels[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(4):470-474(in Chinese).
[7] 孙晶晶, 张晓晶, 宫占峰, 等. 复合材料帽型筋条脱粘的失效机理分析[J]. 航空学报, 2013, 34(7):1615-1626. SUN J J, ZHANG X J, GONG Z F, et al. Failure mechanism study on omega stringer debonding[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1615-1626(in Chinese).
[8] 孙晶晶, 张晓晶, 汪海, 等. 复合材料帽型加筋结构界面脱粘的实验和数值分析[C]//第17届全国复合材料学术会议论文集. 北京:中国复合材料学会, 2012:80-86. SUN J J, ZHANG X J, WANG H, et al. An experimental and numerical study on composite omega stringer debonding[C]//17th National Conference Proceedings on Composite Materials. Beijing:Chinese Society for Composite Materials, 2012:80-86(in Chinese).
[9] 徐建, 印春伟, 童明波. 复合材料T型加筋结构连接界面性能研究[J]. 江苏航空, 2012(S1):111-113. XU J, YIN C W, TONG M B. The study of joint interface performance of composite T stiffener wall structure[J]. Jiangsu Aviation, 2012(S1):111-113(in Chinese).
[10] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of application for advanced three-dimensional fiber textile composites[J]. Composites Part A:Applied Science and Manufacturing, 1990, 30(12):1445-1461.
[11] PATRIDGE I K, CARTIE D D R, BONNINGTON T. Manufacture and performance of Z-pinned composite[C]//Advanced Polymeric Composite. Katz Boca Raton:CRC Press, 2003:103-139.
[12] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(12):2383-2397.
[13] CHANG P, MOURITZ A P, COX B N. Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension[J]. Composites Science and Technology, 2006, 66(13):2163-2176.
[14] BYRD L W, BIRMAN V. Effect of temperature on stresses and delamination failure of Z-pinned joints[J]. International Journal of Mechanical Sciences, 2006, 48(9):938-949.
[15] KOH T M, ISA M D, FEIH S, et al. Experimental assessment of the damage tolerance of z-pinned T-stiffened composite panels[J]. Composites Part B:Engineering, 2013, 44(1):620-627.
[16] GREENHALGH E, LEWIS A, BOWEN R, et al. Evaluation of toughening concepts at structural features in CFRP-Part I:Stiffener pull-out[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(10):1521-1535.
[17] NANAYAKKARA A M, FEIH S, MOURITZ A P. Improving the fracture resistance of sandwich composite T-joints by z-pinning[J]. Composite Structures, 2013, 96:207-215.
[18] JI H, KWEON J H, CHOI J H. Fatigue characteristics of stainless steel pin-reinforced composite hat joints[J]. Composite Structure, 2014, 108:49-56.
[19] 陶永强. Z-pin增强陶瓷基复合材料接头的连接性能[D]. 西安:西北工业大学, 2007:3. TAO Y Q. The connecting performance of the single-lap joint reinforced by Z-pin[D]. Xi'an:Northwestern Polytechnical University, 2007:3(in Chinese).
[20] 董晓阳, 李勇, 张向阳, 等. Z-pin增强树脂基复合材料单搭接接头连接性能研究[J]. 航空学报, 2013, 35(5):1302-1310. DONG X Y, LI Y, ZHANG X Y, et al. Study on performance of polymer composites single lap joints reinforced by Z-pin[J]. Acta Aeronautica et Astronautica Sinica, 2013, 35(5):1302-1310(in Chinese).
[21] 李成虎, 燕瑛. z-pin增强复合材料T型接头层间性能的建模与分析[J]. 复合材料学报, 2010, 27(6):152-157. LI C H, YAN Y. Modeling and analysis of z-pin reinforcing in through-thickness direction of composite T-joint[J]. Acta Materiae Composite Sinica, 2010, 27(6):152-157(in Chinese).
[22] KIM G H, CHOI J H, KWEON J H. Manufacture and performance evaluation of the composite hat-stiffened panel[J]. Composite Structures, 2010, 92(9):2276-2284.
[23] 蒲永伟, 湛利华. 航空先进复合材料帽型加筋构件制造关键技术探究[J]. 航空制造技术, 2015(4):78-81. PU Y W, ZHAN L H. Study on the key manufacturing technology of aeronautical advanced composite hat-stiffened structures[J]. Aeronautical Manufacturing Technology, 2015(4):78-81(in Chinese).

文章导航

/