非定常流动数值模拟研究

面向复杂构型飞机的非定常气动力建模与辨识

  • 杨文 ,
  • 卜忱 ,
  • 眭建军 ,
  • 尚祖铭
展开
  • 中航工业空气动力研究院 气动发展部, 哈尔滨 150001
杨文,男,硕士,工程师。主要研究方向:风洞动态试验技术及非定常气动力建模。Tel:0451-87570255。E-mail:yangwen19860804@163.com;卜忱,男,硕士,研究员。主要研究方向:风洞动态试验技术。Tel:0451-87571476。E-mail:buchen.1975@126.com

收稿日期: 2016-01-25

  修回日期: 2016-03-14

  网络出版日期: 2016-04-06

Unsteady aerodynamic modeling and identification for a complicated aircraft configurations

  • YANG Wen ,
  • BU Chen ,
  • SUI Jianjun ,
  • SHANG Zuming
Expand
  • Department of Aerodynamics Development, AVIC Aerodynamics Research Institute, Harbin 150001, China

Received date: 2016-01-25

  Revised date: 2016-03-14

  Online published: 2016-04-06

摘要

不论是现代高机动隐身战斗机的设计需求还是常规布局飞机的飞行动力学分析,深入研究大迎角飞行时的非线性非定常气动力模型都极其重要。基于纵向运动小振幅及大振幅强迫振荡试验数据,分析了常规稳定导数模型的准确性,并从导数模型出发发展了简化涡流和分离流时间迟滞效应的非定常气动力线性模型和非线性模型,最后应用风洞典型机动历程模拟试验验证了模型的有效性。结果表明:对于复杂构型高机动飞机模型,发展并改进的非线性微分方程模型可以准确预测飞机不同机动下的非定常气动力特性,具有较强的工程可行性。

本文引用格式

杨文 , 卜忱 , 眭建军 , 尚祖铭 . 面向复杂构型飞机的非定常气动力建模与辨识[J]. 航空学报, 2016 , 37(8) : 2464 -2471 . DOI: 10.7527/S1000-6893.2016.0094

Abstract

Adequate modeling of nonlinear and unsteady aerodynamics at high angle of attack flight is important for the design of future fighters with high maneuverability and stealth as well as for the improved prediction of normal aircraft configuration's dynamics. The limitations for conventional aerodynamic derivatives model based on longitudinal small amplitude experimental date and large amplitude experimental date at high angle of attack had been analyzed. The dynamic linear and nonlinear aerodynamic model approximating the vertical and separated flow time lag effects is considered along with the conventional aerodynamic model. Using the model the unsteady aerodynamics of one aircraft in typical maneuver simulation tests is predicted. It is suggested that the structural modification of nonlinear differential equation model proposed in this paper is valid in different maneuvers for complicated aircraft configurations, which bears proof on the practicality of the flight dynamics analysis.

参考文献

[1] JARRAH M A. Low speed wind tunnel investigation of flow about delta wings oscillating in pitch to very high angle of attack:AIAA-1989-0295[R]. Reston:AIAA, 1989.
[2] BRANDON J M, SHAH G H. Unsteady aerodynamic characteristics of fighter model undergoing large-amplitude pitching motions at high angles of attack:AIAA-1990-0309[R]. Reston:AIAA,1990.
[3] ROBERT C N. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(3):185-248.
[4] ABZUG M J, LARRAB E. Airplane stability and control[M]. Cambridge:Cambridge University Press, 1977:165.
[5] LIN G F, LAN C E, BRANDON J M. A generalized dynamic aerodynamic coefficient model for flight dynamics applications:AIAA-1997-3643[R]. Reston:AIAA, 1997.
[6] TOBAK M, SCHIFF L. On the formulation of the aerodynamic characteristics in aircraft dynamics:NASA TRR-456[R]. Washington, D.C.:NASA, 1976.
[7] GHOREYSHI M, JIRASEK A, POST M L. A computational investigation into the use of response functions for a aerodynamic loads modeling:AIAA-2010-3518[R]. Reston:AIAA, 2010.
[8] KLEIN V, MURPHY P C. Estimation of aircraft nonlinear unsteady parameters from wind tunnel data:NASA TM-1998-208[R]. Washington, D.C.:NASA, 1998.
[9] GOMAN M G, KHRABROV A N. State-space representation of aerodynamic characteristics of an aircraft at high angels of attack[J]. Journal of Aircraft, 1994, 31(5):1109-1115.
[10] YI G F, FREDERICK H, LUTZE. Identification of unsteady aerodynamic modeling at high angle of attack:AIAA-1996-3407-CP[R]. Reston:AIAA, 1996.
[11] 杨文, 尚祖铭, 卜忱. 一种基于升力面分解思想的横向状态空间模型[J]. 飞行力学, 2014, 32(5):463-467. YANG W, SHANG Z M, BU C. An lateral-directional state-space model based the idea of splitting the aircraft into several lifting surfaces or panels[J]. Flight Dynamics, 2014, 32(5):463-467(in Chinese).
[12] ABRAMOV M, GOMAN M G. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects:AIAA-2004-5274[R]. Reston:AIAA,2004.
[13] ABRAMOV N B, GOMAN M G, KHRABROV A N, et al. Simple wings unsteady aerodynamics at high angles of attack:Experimental and modeling results:AIAA-1999-4013[R]. Reston:AIAA,1999.
[14] 龚正, 沈宏良. 非定常气动力非线性微分方程建模方法[J]. 航空学报, 2010, 32(1):83-90. GONG Z, SHEN H L. Unsteady aerodynamic modeling method using nonlinear differential equations[J]. Acta Aeronautica et Astronautica Sinica, 2010, 32(1):83-90(in Chinese).
[15] WANG Z J, LAN C E. Fuzzy logic modeling of lateral-directional unsteady aerodynamics:AIAA-1999-4012[R]. Reston:AIAA, 1999.
[16] ZHONG J, WANG C, EDWARD L. Fuzzy logic modeling of nonlinear unsteady aerodynamics:AIAA-1998-4351[R]. Reston:AIAA,1998.
[17] WANG Q, HE K F. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1):14-23.
[18] 史志伟, 明晓. 基于模糊聚类的模糊神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2005, 23(1):21-24. SHI Z W, MING X. The application of FNN in unsteady aerodynamics modeling based on fuzzy clustering[J]. Acta Aerodynamic Sinica, 2005, 23(1):21-24(in Chinese).
[19] ALCORN C W. The X-31 aircraft advances in aircraft agility and performance[J]. Progress Aerospace Science, 1996, 15(32):377-413.
[20] 汪清, 蔡金狮.飞机大迎角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4):391-398. WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4):391-398(in Chinese).

文章导航

/