PID控制器与CFD的耦合模拟技术研究及应用
收稿日期: 2016-01-19
修回日期: 2016-03-22
网络出版日期: 2016-04-05
基金资助
国家自然科学基金(11172315,91216203,11372341,11532016)
Research and application of coupled simulation techniques of PID controller and CFD
Received date: 2016-01-19
Revised date: 2016-03-22
Online published: 2016-04-05
Supported by
National Natural Science Foundation of China (11172315, 91216203, 11372341, 11532016)
飞行控制系统(FCS)与计算流体力学(CFD)的耦合求解是一个崭新的研究领域。传统的飞行控制系统的工程仿真方法依靠气动力模型或气动力数据库得到不同飞行姿态的气动力;而当前方法通过耦合求解Navier-Stokes方程和刚体动力学方程(RBD)以获取飞行器运动过程实时流场和非定常气动力。由于充分反映了气动力的非定常、非线性效应,因而从根本上保证了飞行控制系统仿真的精度。以方形截面导弹俯仰姿态控制为例,首先给出了系统的传递函数,并基于系统在单位阶跃舵偏操纵下的开环响应特性,提出了传递函数的修正方法,进而设计了该外形俯仰姿态控制的PID控制器。数值模拟了不同控制参数时,P控制器、PD控制器和PID控制器的控制效果。针对不同的控制指令,根据建立的控制律,数值模拟了飞行器在PID控制器作用下的实时响应过程,最终成功实现了对飞行器的俯仰姿态控制。研究发现,当飞行器作慢速机动时,工程仿真与CFD数值计算的结果吻合很好,两种方法可以互相验证;但快速机动时,两种方法给出的结果差异明显,基于CFD的耦合模拟方法由于模拟了飞行器运动和舵面偏转导致的非定常流动过程,其结果比基于静态气动力的工程方法的可靠性更高。在大攻角和快速机动等非定常效应较强时,采用CFD方法评估和验证飞行控制系统是很有必要的。
关键词: PID控制器; 数值虚拟飞行; CFD/RBD/FCS耦合模拟; 快速机动; 数值模拟
陈琦 , 郭勇颜 , 谢昱飞 , 陈坚强 , 袁先旭 . PID控制器与CFD的耦合模拟技术研究及应用[J]. 航空学报, 2016 , 37(8) : 2507 -2516 . DOI: 10.7527/S1000-6893.2016.0093
It is a novel research field to couple computational fluid dynamics (CFD) into the simulation of flight control system (FCS). In engineering simulations of FCS, the aerodynamics of the vehicle is given by the aerodynamic models or aerodynamic databases, while in this coupled way, they are obtained by solving the Navier-Stokes equations/rigid body dynamics (RBD) equations. Thus the unsteady and nonlinear portion of the aerodynamics is adequately reserved, which guarantees the accuracy of simulation of the FCS. Taking the control of the pitching attitude of a square cross section missile as an example, the transfer functions about the vehicle motion system are first given, and modifications to transfer functions are conducted based on the open-loop response characteristics of the system to unit step fin-deflection maneuver, then the PID controller for the control of the pitching attitude of the vehicle is designed. Control effects about the P, PD and PID controller are numerically investigated with various control parameters. According to different control commands, the real-time response process of the vehicle under the PID controller is numerically simulated and the attitude control of pitching motion of the vehicle is finally reached. The investigation shows that when the maneuver action is slow, the simulation results based on CFD show good agreement with those based on the engineering simulation, while when the maneuver action is rapid, the two results have significant differences. The present method, which simulates the unsteady flow process induced by the vehicle motion and the fin-deflection, is more reliable than the engineering simulation method based on static aerodynamics. This indicates that it is of great necessity to predict and validate the FCS utilizing CFD method in the case of strong nonlinear effects including high angles of attack and rapid maneuver.
[1] TAN W Q, EFREMOV A V, QU X J. A citerion based on closed-loop pilot-aircraft systems for predicting flying qualities[J]. Chinese Journal of Aeronautics, 2010, 23(5):511-517.
[2] 刘艳. 总体设计中的飞控系统控制律设计与评估研究[D]. 西安:西北工业大学, 2006:2-3. LIU Y. Research on flight control law designing and evaluating for concept aircraft design[D]. Xi'an:Northwestern Polytechnical University, 2006:2-3(in Chinese).
[3] 陈云霞, 康锐, 孙宇峰. 导弹飞控系统可靠性仿真研究[J]. 航空学报, 2004, 25(3):242-247. CHEN Y X, KANG R, SUN Y F. Study on reliability simulation for missile's flight control system[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3):242-247(in Chinese).
[4] MAGILL J C, SHAWN W. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston:AIAA, 2002.
[5] GLENN G, JOY K, JUAN L. Wind tunnel based virtual flight testing:AIAA-2000-0829[R]. Reston:AIAA, 2000.
[6] NAKAHASHI K, GUMIYA T. An intergrid boundary definition method for overset unstructured grid approach:AIAA-1999-3304[R]. Reston:AIAA, 1999.
[7] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes:AIAA-1989-0115[R]. Reston:AIAA, 1989.
[8] FUJⅡ K. Numerical experiment of the flight trajectory simulation by fluid dynamics and flight dynamics coupling:AIAA-1993-3324[R]. Reston:AIAA, 1993.
[9] BUNING P G, GOMEZ R J, SCALLION W I. CFD approaches for simulation of wing-body stage separation:AIAA-2004-4838[R]. Reston:AIAA, 2004.
[10] COSTELLO M, GATTO S, SAHU J. Using CFD/RBD results to generate aerodynamic models for projectile flight simulation:AIAA-2007-6582[R]. Reston:AIAA, 2007.
[11] SAHU J. Time-accurate numerical prediction of free-flight aerodynamics of a finned projectile:AIAA-2005-5817[R]. Reston:AIAA, 2005.
[12] 杨云军, 崔尔杰, 周伟江. 耦合时间精度对模拟飞行器自由运动特性的影响[J]. 计算物理, 2007, 24(1):42-48. YANG Y J, CUI E J, ZHOU W J. Influence of coupling time accuracy on the simulation of aircraft free movement[J]. Chinese Journal of Computational Physics, 2007, 24(1):42-48(in Chinese).
[13] 陈坚强, 陈琦, 袁先旭, 等. 舵面操纵动态响应的数值模拟研究[J]. 力学学报, 2013, 45(2):302-306. CHEN J Q, CHEN Q, YUAN X X, et al. Numerical simulation study on dynamics response under rudder control[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):302-306(in Chinese).
[14] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44:376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flightcontrol coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44:376-417(in Chinese).
[15] ALLAN M R, BADCOCK K J, RICHARDS B E. CFD based simulation of longitudinal flight mechanics with control:AIAA-2005-0046[R]. Reston:AIAA, 2005.
[16] 李锋, 杨云军, 刘周, 等. 飞行器气动/飞行/控制一体化耦合模拟技术[J]. 空气动力学学报, 2015, 33(2):151-161. LI F, YANG Y J, LIU Z, et al. Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2):151-161(in Chinese).
[17] 谢昱飞. 细长圆锥超声速绕流的非对称分离及其诱导之等角速度锥转运动[D]. 绵阳:中国空气动力研究与发展中心, 2005:13-21. XIE Y F. Computation and analysis of asymmetric separations over a slender cone and one induced steady coning motion[D]. Mianyang:China Aerodynamics Research and Development Center, 2009:13-21(in Chinese).
[18] ROBERT C N. 飞行稳定性和自动控制[M]. 顾均晓, 译. 北京:国防工业出版社, 2008:295-297. ROBERT C N. Flight stability and automatic control[M]. GU J X, translated. Beijing:National Defense Industry Press, 2008:295-297(in Chinese).
[19] 陈琦, 陈坚强, 袁先旭, 等. 谐波平衡法在动导数快速预测中的应用研究[J]. 力学学报, 2014, 46(2):183-190. CHEN Q, CHEN J Q, YUAN X X, et al. Application of a harmonic balance method in rapid predictions of dynamic stability derivatives[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):183-190(in Chinese).
[20] 刘伟, 杨小亮, 赵云飞. 高超声速飞行器加速度导数数值模拟[J]. 空气动力学学报, 2010, 28(4):426-429. LIU W, YANG X L, ZHAO Y F. Numerical simulation of acceleration derivative of hypersonic aircraft[J]. Acta Aerodynamica Sinica, 2010, 28(4):426-429(in Chinese).
[21] TREVOR J B, KRISTIAN P. CFD predictions of square and elliptic cross-section missile configurations at supersonic speeds:AIAA-2004-5453[R]. Reston:AIAA, 2004.
/
〈 | 〉 |