流体力学与飞行力学

航空燃油类型对催化惰化系统性能的影响

  • 冯诗愚 ,
  • 邵垒 ,
  • 李超越 ,
  • 陈悟 ,
  • 刘卫华
展开
  • 南京航空航天大学 航空宇航学院, 南京 210016
邵垒 男,博士研究生。主要研究方向:飞机油箱惰性化技术。Tel:025-84892105 E-mail:165617594@qq.com;李超越 男,博士研究生。主要研究方向:飞机燃油系统中的传热传质问题。Tel:025-84892105 E-mail:810301978@qq.com;陈悟 女,硕士研究生。主要研究方向:燃油惰化及强化传热技术。Tel:025-84892105 E-mail:1771792949@qq.com;刘卫华 男,博士,教授。主要研究方向:飞行器油箱安全防护技术。Tel:025-84892105 E-mail:liuwh@nuaa.edu.cn

收稿日期: 2015-06-25

  修回日期: 2015-12-18

  网络出版日期: 2016-04-05

基金资助

航空科学基金(20132852040);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20150107);中央高校基本科研业务费专项资金;江苏省普通高校研究生科研创新计划(KYLX15_0231);江苏高校优势学科建设工程基金

Performance of catalytic inerting system affected by various aviation jet fuels

  • FENG Shiyu ,
  • SHAO Lei ,
  • LI Chaoyue ,
  • CHEN Wu ,
  • LIU Weihua
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-06-25

  Revised date: 2015-12-18

  Online published: 2016-04-05

Supported by

Aeronautical Science Foundation of China (20132852040);Open Foundation of Graduate Innovation Center in NUAA (kfjj20150107);the Fundamental Research Funds for the Central Universities;Jiangsu Innovation Program for Graduate Education (KYLX15_0231);Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

在设计了一种催化惰化系统流程并描述其工作原理的基础上,以从油箱中抽吸气体的摩尔流量为基准,推导了流经催化反应器后各气体组分的流量关系,通过质量守恒方程及气体平衡溶解关系,建立了油箱气相空间气体浓度变化的数学模型。选择了RP-3、RP-5和RP-6燃油作为对象,用所建立的数学模型计算了不同载油率和催化反应器效率下的气相空间氧浓度变化关系。研究显示,由于3种燃油的蒸汽压不同,造成从外界环境补气及进入油箱的混合惰气流量不同,从而导致气相空间氧浓度的变化规律差异远大于采用中空纤维膜的机载惰化系统。因此,在设计催化惰化系统时要充分考虑燃油类型对惰化系统性能的影响。

本文引用格式

冯诗愚 , 邵垒 , 李超越 , 陈悟 , 刘卫华 . 航空燃油类型对催化惰化系统性能的影响[J]. 航空学报, 2016 , 37(6) : 1819 -1826 . DOI: 10.7527/S1000-6893.2015.0344

Abstract

A novel catalytic inerting system is designed and its working principle is described in detail. The outflow rates of each gas component passing through the catalytic reactor are derived in which the molar flow rate of suction gas is used as a baseline. A mathematical model to calculate the concentrations of all gas components on ullage of the fuel tank is set up via the mass conservation equations. Three different aviation jet fuels including RP-3, RP-5 and RP-6 are chosen to calculate the variation of the oxygen concentration on ullage under various fuel loads and efficiencies of the catalytic reactor via the given mathematical model. The study reveals that owning to the disparate vapor pressure of the chosen aviation jet fuels, the flow rates of the supplemental air from the atmospheric environment and the produced mixed inerting gas entering into the fuel tank are extremely different. Hence, the difference of the variation of the oxygen concentration on ullage adopting these there jet fuels in the catalytic inerting system is larger than that in the hollow fiber membrane based on-board inert gas generation system. It is suggested that the influence of the type of aviation jet fuels should be considered carefully during the design of a catalytic inerting system.

参考文献

[1] GRENICH A F, JOHNSON A M, DESMARAIS L A, et al. Vulnerability methodology and protctive measures for aircraft fire and explosion hazards:AFWAL-TR-85-2060[R]. Seattle:Boeing Military Airplane Company, 1986.
[2] JOHNSON R L, GILLERMAN J B. Aircraft fuel tank inerting system:ADA141863[R]. Torrance:Air Research Manufacturing Company, 1983.
[3] LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems[M]. New York:John Wiley & Sons, 2010:225-237.
[4] SMITH D E. Fuel tank inerting systems for civil aircraft[D]. Colorado:Colorado State University, 2014.
[5] 刘小芳, 刘卫华. 飞机供氧和燃油箱惰化技术概况[J]. 北华航天工业学院学报,2008, 18(3):4-7. LIU X F, LIU W H. Outline of airborne oxygen supplied and its fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering, 2008, 18(3):4-7(in Chinese).
[6] JOHNSON R W, ZAKI R, YATES S F. Advanced carbon dioxide fuel tank inerting system:7905259 B2[P]. 2011-03-15.
[7] LIMAYE S, KOENIG D. Catalytic reactive component reduction system and methods for the use thereof:2008/0199376 A1[P]. 2008-08-21.
[8] LIMAYE S Y, ROBERTSON S, KOENIG D, et al. Reactive component reduction system and methods for the use thereof:7896292[P]. 2011-01-13.
[9] ROBERT J R, MORRIS W, MILLER J, et al. Fuel deoxygenation and aircraft thermal management:AIAA-2006-4027[R]. Reston:AIAA, 2006.
[10] STUART R, WESLEY J, DONALD K, et al. Development of green on-board inert gas generation system (GOBIGGSTM)[EB/OL]. (2007-03-21)[2015-06-25]. http://www.fire.tc.faa.gov/2007conference/files/Fuel_Tank_Safety/ThursPM/LimayeGOBIGGS/LimayeGOBIGGS-Abs.pdf.
[11] STUART R. Announces successful FAA testing of its fuel tank safety system, to prevent TWA 800 type explosions[EB/OL]. (2007-05-15)[2015-06-25]. http://www.phyre.net/uploads/3/7/5/7/37579581/phyre_faa_testing_press_release.pdf.
[12] WALKER S, JUNG W, ROBERTSON S. Demonstration of a novel catalyst based green on board inert gas generation system (GOBIGGSTM) for fuel tank inerting[C]//69th American Helicopter Society International Annual Forum. Alexandria:The AHS International, Inc., 2013:550-559.
[13] 刘夙春, 邱献双. 一种新型的飞机油箱催化惰化系统[J]. 航空科学技术, 2011(4):27-29. LIU S C, QIU X S. A new fuel tank catalytically inerting system[J]. Aeronautical Science & Technology, 2011(4):27-29(in Chinese).
[14] 冯诗愚, 卢吉, 刘卫华, 等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6):1332-1339. FENG S Y, LU J, LIU W H, et al. Separation performance of hollow fiber membrane for on-board inerting gas generating system[J]. Journal of Aerospace Power, 2012, 27(6):1332-1339(in Chinese).
[15] 薛勇, 刘卫华, 冯诗愚, 等. 机载惰化系统中空纤维膜分离性能的实验研究[J]. 西安交通大学学报, 2011, 45(3):107-111. XUE Y, LIU W H, FENG S Y, et al. Experimental study on separation performance of hollow fiber membrane for onboard inert gas generating system[J]. Journal of Xi'an Jiaotong University, 2011, 45(3):107-111(in Chinese).
[16] 王志伟, 王学德, 刘卫华, 等. 不同进气方式对某民机中央翼油箱惰化性能的影响[J]. 安全与环境学报, 2012,12(3):172-176. WANG Z W, WANG X D, LIU W H, et al. Influence of different distribution methods on the inerting process of a civil airplane center wing tank[J]. Journal of Safety and Environment, 2012, 12(3):172-176(in Chinese).
[17] 冯晨曦, 刘卫华, 冯诗愚, 等. 气体分配方式对多隔仓燃油箱地面惰化的影响[J]. 航空动力学报, 2011, 26(11):2528-2533. FENG C X, LIU W H, FENG S Y, et al. Study on ground-based inerting process influenced by different gas distribution for multi-bay fuel tank[J]. Journal of Aerospace Power, 2011, 26(11):2528-2533(in Chinese).
[18] CAI Y, BU X, LIN G, et al. Experimental study of an aircraft fuel tank inerting system[J]. Chinese Journal of Aeronautics, 2015, 28(2):394-402.
[19] BURNS M, CAVAGE W M, MORRISON R, et al. Evaluation of fuel tank flammability and the FAA inerting system on the NASA 747 SCA:DOT/FAA/AR-04/41[R]. Washington:Office of Aviation Research, 2004.
[20] 冯诗愚, 刘卫华, 黄龙, 等. 飞机燃油箱气相空间平衡氧浓度理论研究[J]. 南京航空航天大学学报, 2011, 43(4):556-560. FENG S Y, LIU W H, HUANG L, et al. Theoretical study of equilibrium oxygen concentrationon ullage in aircraft fuel tank[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(4):556-560(in Chinese).
[21] 童升华. 国产燃油理化性能与易燃性研究[D]. 南京:南京航空航天大学, 2013. TONG S H. Research on physicochemical characteristics & flammability of domestic fuels[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
[22] 汪明明, 冯诗愚, 蒋军昌, 等. 飞机燃油箱冲洗与洗涤惰化技术比较分析[J]. 南京航空航天大学学报, 2010, 42(5):614-619. WANG M M, FENG S Y, JIANG J C, et al. Comparative analysis of fuel washing and scrubbing in aircraft fuel tank[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(5):614-619(in Chinese).
[23] American National Standard. Standard test method for estimation of solubility of gases in petroleum liquids:Standard A D2779-92[S]. West Conshohocken, PA:ASTM, 2007.

文章导航

/