综述

飞行器动态稳定性参数计算方法研究进展

  • 刘绪 ,
  • 刘伟 ,
  • 柴振霞 ,
  • 杨小亮
展开
  • 国防科学技术大学 航天科学与工程学院, 长沙 410073
刘绪,男,博士研究生。主要研究方向:高超声速空气动力学。Tel.:0731-84574792。E-mail:liuxuqd@126.com;刘伟,男,博士,教授。主要研究方向:计算流体力学研究与应用。Tel.:0731-84573137。E-mail:fishfather6525@sina.com;柴振霞,女,博士研究生。主要研究方向:频域计算方法在非定常流动中的应用。Tel.:0731-84574792。E-mail:chaizhenxia@sina.cn;杨小亮,男,博士,讲师。主要研究方向:计算流体力学研究与应用。Tel.:0731-84574792。E-mail:yangxl_nudt@sina.com

收稿日期: 2016-01-11

  修回日期: 2016-03-23

  网络出版日期: 2016-03-28

基金资助

国家自然科学基金(11172325,11502292);国防科学技术大学预研项目(ZDYYJCYJ20140101)

Research progress of numerical method of dynamic stability derivatives of aircraft

  • LIU Xu ,
  • LIU Wei ,
  • CHAI Zhenxia ,
  • YANG Xiaoliang
Expand
  • College of Areospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2016-01-11

  Revised date: 2016-03-23

  Online published: 2016-03-28

Supported by

National Natural Science Foundation of China (11172325, 11502292);NUDT Advanced Project (ZDYYJCYJ20140101)

摘要

动态稳定性参数(简称动导数)是飞行器控制系统设计、飞行器动不稳定发生边界分析及相应动态稳定性判据研究的关键气动参数。在对飞行稳定性问题进行概述的基础上,介绍飞行器动态稳定性参数数值模拟的国内外研究进展。并按照理论方法、工程近似方法及计算流体力学(CFD)模拟方法的动导数发展方向对近年来主要的动导数计算方法进行了综述,评价了各种动导数预测方法的优缺点,指出了动导数数值模拟在理论基础、非定常气动力建模、预测方法精度和效率等方面存在的问题。最后对动导数数值模拟的发展趋势进行了展望。

本文引用格式

刘绪 , 刘伟 , 柴振霞 , 杨小亮 . 飞行器动态稳定性参数计算方法研究进展[J]. 航空学报, 2016 , 37(8) : 2348 -2369 . DOI: 10.7527/S1000-6893.2016.0098

Abstract

Dynamic stability derivatives (for short, dynamic derivatives) are key aerodynamic parameters for designing the control system, investigating the dynamic instability boundary and studying the dynamic stability criteria of aircraft. After a brief summary of flight stability, the research progress made in the numerical simulation of aircraft dynamic stability parameters is described. The main dynamic derivative calculation methods applied over the past few years are reviewed with respect to the theoretical method, engineering approximation and computational fluid dynamics (CFD) simulation. The merits of these dynamic derivative prediction methods are identified, and problems with numerical simulation of dynamic derivatives in terms of theoretical basis, unsteady aerodynamic modeling, the precision and efficiency of the prediction methods are pointed out. A mature, reliable prediction of dynamic stability characteristic enables us to evaluate and select different air design plans so as to minimize the aircraft design cost and mitigate risk exposure. Finally, the development trend of numerical simulation of dynamic derivatives is prospected.

参考文献

[1] 刘伟. 细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究[D]. 长沙:国防科学技术大学, 2004:20. LIU W. Nonlinear dynamics analysis for mechanism of slender wing rock and study of numerical simulation method[D]. Changsha:National University of Defense Technology, 2004:20(in Chinese).
[2] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙:国防科学技术大学, 2012:2. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha:National University of Defense Technology, 2012:2(in Chinese).
[3] CHAMBERS J R, HALL R M. Historical review of uncommanded lateral-directional motions at transonic conditions[J]. Journal of Aircraft, 2004, 41(3):436-447.
[4] WOODSON S H, GREEN B E, CHUNG J J, et al. Understanding abrupt wing stall with computational fluid dynamics[J]. Journal of Aircraft, 2005, 42(3):578-585.
[5] FORSYTHE J R, FREMAUX C M, HALL R M. Calculation of static and dynamic stability derivatives of the F/A-18E in abrupt wing stall using RANS and DES[M]//Computational Fluid Dynamics. Berlin:Springer, 2006:537-542.
[6] 杨小亮, 刘伟, 吴天佐, 等. 细长三角翼滚转/侧滑耦合运动效应分析[J]. 空气动力学学报, 2014, 32(1):1-7. YANG X L, LIU W, WU T Z, et al. Coupling mechanism analysis of a slender delta wing in combined free-roll and free-sideslip motion[J]. Acta Aerodynamica Sinica, 2014, 32(1):1-7(in Chinese).
[7] BOYD T J M. One hundred years of G.H. Bryan's stability in aviation[J]. Journal of Aeronautical History, 2011(4):97-115.
[8] NIELSEN J N. Missile aerodynamics[M]. New York:McGraw-Hill, 1960:35.
[9] 贺国宏, 杨小亮, 赵海洋, 等. 高超声速弹头俯仰动态特性数值研究[J]. 兵工学报, 2009, 30(7):862-866. HE G H, YANG X L, ZHAO H Y, et al. Numerical study of pitching dynamic characteristic for hypersonic missile[J]. Acta Armamentarii, 2009, 30(7):862-866(in Chinese).
[10] 牟斌, 刘伟, 瞿章华. 球锥体高超声速绕流的俯仰阻尼导数的数值计算[J]. 国防科技大学学报, 2000, 22(4):5-10. MOU B, LIU W, QU Z H. Numerical calculation of damping-in-pitch derivatives for hypersonic flowover sphere-cone bodies[J]. Journal of National University of Defense Technology, 2000, 22(4):5-10(in Chinese).
[11] 伍开元. 民机空难相关非定常气动力问题研究[J]. 流体力学实验与测量, 2003, 17(2):1-9. WU K Y. Unsteady aerodynamics in fatal accidents[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(2):1-9(in Chinese).
[12] 童秉纲, 陈强. 关于非定常空气动力学[J]. 力学进展, 1983(4):377-394. TONG B G, CHEN Q. Some remarks on unsteady aerodynamics[J]. Advances in Mechanics, 1983(4):377-394(in Chinese).
[13] BRYAN G H, WILLIAMS W E. The longitudinal stability of aerial gliders[J]. Proceedings of the Royal Society of London, 1904, 73(488-496):100-116.
[14] BRYAN G H. Stability in aviation:An introduction to dynamical stability as applied to the motions of aeroplanes[J]. Nature, 1912, 88(25):406-407.
[15] ETKIN B, REID L D. Dynamics of flight:Stability and control[M]. New York:Wiley, 1996:107.
[16] ETKIN B. Dynamics of atmospheric flight[M]. New York:Dover Publications, 2012:125.
[17] TOBAK M, SCHIFF L B. Aerodynamic mathematical modeling-basic concepts[J]. AGARD Lecture Series, 1981, 77(114):1-32.
[18] TOBAK M, SCHIFF L B. On the formulation of the aerodynamic characteristics in aircraft dynamics:NASA TR R-456[R]. Washington, D.C.:NASA, 1976.
[19] VOLTERRA V. Theory of functionals and of integral and integro-differential equations[M]. New York:Dover Publications, 2005:25.
[20] TOBAK M, SCHIFF L B. The role of time-history effects in the formulation of the aerodynamics of aircraft dynamics:NASA TM 78471[R]. Washington, D.C.:NASA, 1978.
[21] 任玉新, 刘秋生, 沈孟育. 飞行器动态稳定性参数的数值计算方法[J]. 空气动力学学报, 1996, 14(2):117-126. REN Y X, LIU Q S, SHEN M Y. A numerical method for evaluating aerodynamic stability parameters of vehicles[J]. Acta Aerodynamica Sinica, 1996, 14(2):117-126(in Chinese).
[22] COWLEY W L, GLAUERT H. The effect of the lag of the downwash on the longitudinal stability of an aeroplane and on the rotary derivative Mq[M]. London:HM Stationery Office, 1921:25-33.
[23] KLEIN V, MORELLI E A. Aircraft system identification:Theory and practice[M]. Reston:AIAA, 2006:132.
[24] BOLSTER C. Effect of slipstream on the longitudinal stability of a low wing monoplane[J]. Journal of the Aeronautical Sciences, 2012, 4(10):411-416.
[25] 刘绪, 刘伟, 周云龙, 等. 吸气式内外流一体化飞行器动导数数值模拟[J]. 空气动力学学报, 2015, 33(2):147-155. LIU X, LIU W, ZHOU Y L, et al. Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2):147-155(in Chinese).
[26] ADAMS M C. Slender-body theory-review and extension[J]. Journal of the Aeronautical Sciences, 2012, 20(2):85-98.
[27] KVSSNER H. A general method for solving problems of the unsteady lifting surface theory in the subsonic range[J]. Journal of the Aeronautical Sciences, 1954, 21(1):17-26.
[28] ERICSSON L E. Generalized unsteady embedded Newtonian flow[J]. Journal of Spacecraft and Rockets, 1975, 12(12):718-726.
[29] HUI W H. Stability of oscillating wedges and caret wings in hypersonic and supersonic flows[J]. AIAA Journal, 1969, 7(8):1524-1530.
[30] ORLIK-RVCKEMANN K. Dynamic stability parameters[C]//AGARD Conference Proceedings No. 235. New York:AGARD, 1978.
[31] 任玉新. 基于敏感性分析的飞行器动导数计算方法[C]//空气动力学前沿研究学术研讨会. 北京:中国空气动力学会, 2003:390-396. REN Y X. Calculation method of dynamic derivatives based on sensitivity analysis[C]//Proceedings of the Academic Seminar on the Forefront of Aerodynamics. Beijing:Chinese Aerodynamics Research Society, 2003:390-396(in Chinese).
[32] 任玉新, 雷国东. 飞行器稳定性参数的理论与计算方法[C]//中国力学学会学术大会. 北京:中国力学学会, 2009:231-345. REN Y X, LEI G D. Theory and calculation method of aircraft stability parameter[C]//Proceedings of the Chinese Conference of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2009:231-245(in Chinese).
[33] 郭晨曦, 任玉新. 基于敏感性分析方法计算三维钝锥的气动稳定性导数[C]//中国力学学会学术大会. 北京:中国力学学会, 2013:182. GUO C X, REN Y X. Based on sensitivity analysis method for calculating dynamic derivatives of blunt cone[C]//Proceedings of the Chinese Conference of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013:182(in Chinese).
[34] 刘伟, 牟斌. 高超声速滚转阻尼导数数值模拟[J]. 飞行力学, 2000, 18(2):27-29. LIU W, MOU B. Numerical simulation of damping-in-roll derivatives of blunt cone for hypersonic flow[J]. Flight Mechanics, 2000, 18(2):27-29(in Chinese).
[35] 刘伟, 瞿章华. 强迫振动法求解偏航阻尼导数[J]. 推进技术, 1998, 19(3):30-32. LIU W, QU Z H. Calculation of damping-in-yaw derivatives by forced oscllation method[J]. Journal of Propulsion Technology, 1998, 19(3):30-32(in Chinese).
[36] 刘伟, 牟斌. 类升力体俯仰阻尼特性数值研究[C]//第十届全国计算流体力学会议. 北京:中国力学学会, 2000:381-386. LIU W, MOU B. Numerical study of damping-in-pitch characteristics for liftbody-type[C]//Proceedings of the Tenth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2000:381-386(in Chinese).
[37] 袁先旭, 张涵信, 谢昱飞. 基于CFD方法的俯仰静、动导数数值计算[J]. 空气动力学学报, 2005, 23(4):458-463. YUAN X X, ZHANG H X, XIE Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamica Sinica, 2005, 23(4):458-463(in Chinese).
[38] 袁先旭, 张涵信, 谢昱飞. 基于非定常流场数值模拟的俯仰阻尼导数计算方法[C]//近代空气动力学研讨会. 北京:中国空气动力学会, 2005:301-309. YUAN X X, ZHANG H X, XIE Y F. Pitch damping derivative calculation method based on unsteady flow field numerical simulation[C]//Proceedings of the Modern Aerodynamics Conference. Beijing:Chinese Aerodynamics Research Society, 2005:301-309(in Chinese).
[39] 袁先旭, 谢昱飞, 陈亮中, 等. 飞行器静稳定性导数的非定常数值模拟研究[C]//中国力学学会学术大会. 北京:中国力学学会, 2013:181. YUAN X X, XIE Y F, CHEN L Z, et al. Study on the unsteady numerical simulation of the static stability of the aircraft[C]//Proceedings of the Chinese Conference of Theoretical and Applied Mechanics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2013:181(in Chinese).
[40] 袁先旭, 陈琦, 何琨, 等. 再入飞行器俯仰动态失稳的分叉理论与计算分析[J]. 空气动力学学报, 2015, 33(2):162-169. YUAN X X, CHEN Q, HE K, et al. Dynamic destabilization analysis of the reentry vehicles using bifurcation theory and unsteady numerical simulation[J]. Acta Aerodynamica Sinica, 2015, 33(2):162-169(in Chinese).
[41] 史爱明, 杨永年, 叶正寅. 结合CFD技术的跨音速动导数计算方法研究[J]. 西北工业大学学报, 2008, 26(1):11-14. SHI A M, YANG Y N, YE Z Y. A more accurate method for calculating transonic dynamic derivatives (TDDs) using present state-of-the-art CFD[J]. Journal of Northwestern Polytechnical University, 2008, 26(1):11-14(in Chinese).
[42] 卢学成, 叶正寅, 张伟伟. 超音速、高超音速飞行器动导数的高效计算方法[J]. 航空计算技术, 2008, 38(3):28-31. LU X C, YE Z Y, ZHANG W W. A high efficient method for computing dynamic derivatives of supersonic/hypersonic aircraft[J]. Aeronautical Computing Technique, 2008, 38(3):28-31(in Chinese).
[43] 陶洋, 范召林, 赵忠良. 基于CFD的带控制舵导弹的动导数计算[J]. 航空动力学报, 2010, 25(1):102-106. TAO Y, FAN Z L, ZHAO Z L. Predictions of dynamic damping coefficients of basic finner based on CFD[J]. Journal of Aerospace Power, 2010, 25(1):102-106(in Chinese).
[44] 陶洋, 袁先旭, 范召林, 等. 方形截面导弹摇滚特性数值研究[J]. 空气动力学学报, 2010, 28(3):285-290. TAO Y, YUAN X X, FAN Z L, et al. Numerical investigation of dynamic behavior of square section missile in roll at high incidence[J]. Acta Aerodynamica Sinica, 2010, 28(3):285-290(in Chinese).
[45] 范晶晶, 阎超, 李跃军. 飞行器大迎角下俯仰静、动导数的数值计算[J]. 航空学报, 2009, 30(10):1846-1850. FAN J J, YAN C, LI Y J. Computation of vehicle pitching static and dynamic derivatives at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1846-1850(in Chinese).
[46] 陈东阳, Laith K. ABBAS, 芮筱亭. 旋转弹箭气动导数与气动热仿真计算[J]. 计算机仿真, 2014(5):26-30. CHEN D Y, ABBAS L K, RUI X T. Aerodynamic derivative and aerodynamic heating simulation and computation of spinning vehicle[J]. Computer Simulation, 2014(5):26-30(in Chinese).
[47] 陈东阳. 超音速旋转弹箭气动特性及流固耦合计算分析[D]. 南京:南京理工大学, 2014:8-34. CHEN D Y. Aerodynamic characteristics and fluid-structure interaction computations and analysis of supersonic spinning flying vehicle[D]. Nanjing:Nanjing University of Science and Technology, 2014:8-34(in Chinese).
[48] 黄龙太, 王红伟, 姜琬. 基于CFD动网格技术的飞艇动导数计算方法[J]. 航空计算技术, 2013(6):66-68. HANG L T, WANG H W, JIANG W. A method of calculating airship dynamic derivative based on CFD dynamic mesh technique[J]. Aeronautical Computer Technique, 2013(6):66-68(in Chinese).
[49] 陈春鹏, 杨康智, 王莉萍. 飞机气动力工程估算的程序化实现方法[J]. 科技创新与应用, 2014(6):26-27. CHEN C P, YANG K Z, WANG L P. Aircraft aerodynamics engineering estimation of program implementation[J]. Technology Innovation and Application, 2014(6):26-27(in Chinese).
[50] 蒋胜矩, 刘玉琴, 党明利. 基于定常NS方程的飞行器滚转阻尼力矩系数导数计算方法[J]. 弹箭与制导学报, 2008, 28(1):180-182. JIANG S J, LIU Y Q, DANG M L. A calculation method of aircraft roll-damping moment coefficient derivative based on steady NS equation[J]. Journal of Projectiles Rockets Missiles and Guidance, 2008, 28(1):180-182(in Chinese).
[51] 孙智伟, 程泽荫, 白俊强, 等. 基于准定常的飞行器动导数的高效计算方法[J]. 飞行力学, 2010, 28(2):28-30. SUN Z W, CHENG Z Y, BAI J Q, et al. A high efficient method for computing dynamic derivatives of aircraft based on quasi-steady CFD method[J]. Flight Dynamics, 2010, 28(2):28-30(in Chinese).
[52] HALL K C, EKICI K, THOMAS J P, et al. Harmonic balance methods applied to computational fluid dynamics problems[J]. International Journal of Computational Fluid Dynamics, 2013, 27(2):52-67.
[53] 王勇献, 张理论, 车永刚, 等. 结构网格CFD应用程序在天河超级计算机上的高效并行与优化[J]. 电子学报, 2015, 43(1):36-44. WANG Y X, ZHANG L L, CHE Y G, et al. Efficient parallel computing and performance tuning for multi-block structured grid CFD applications on Tianhe supercomputer[J]. Acta Electronica Sinica, 2015, 43(1):36-44(in Chinese).
[54] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:152-157. YAN C. Computational fluid dynamics method and its application[M]. Beijing:Beihang University Press, 2006:152-157(in Chinese).
[55] GLAZ B, LIU L, FRIEDMANN P P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework[J]. AIAA Journal, 2010, 48(10):2418-2429.
[56] ROSENBAUM B, SCHULZ V. Response surface methods for efficient aerodynamic surrogate models, Vol.123:Computational flight testing[M]. Berlin:Springer, 2013:113-129.
[57] 刘绪. 高超声速内外流一体化飞行器动态特性研究[D]. 长沙:国防科学技术大学, 2011:35-49. LIU X. Investigation of dynamic characteristics of hypersonic airframe/propulsion integrative vehicle[D]. Changsha:National University of Defense Technology, 2011:35-49(in Chinese).
[58] 叶川, 马东立. 带翼潜航器动力学建模及动稳定性[J]. 北京航空航天大学学报, 2013, 39(9):1137-1143. YE C, MA D L. Dynamic modeling and stability analysis for underwater craft with wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1137-1143(in Chinese).
[59] 马东立, 叶川. 升力浮力复合型飞艇动导数分析[J]. 航空动力学报, 2013, 28(5):1074-1080. MA D L, YE C. Dynamic derivative analysis for hybrid airship incorporating lift and buoyancy[J]. Journal of Aerospace Power, 2013, 28(5):1074-1080(in Chinese).
[60] 米百刚, 詹浩, 王斑. 基于刚性动网格技术的动导数数值模拟[J]. 航空动力学报, 2014, 29(11):2659-2664. MI B G, ZHAN H, WANG B. Numerical simulation of dynamic derivatives based on rigid moving mesh technique[J]. Journal of Aerospace Power, 2014, 29(11):2659-2664(in Chinese).
[61] 席柯, 阎超, 黄宇, 等. 俯仰阻尼导数分量的CFD数值模拟[J]. 北京航空航天大学学报, 2015, 41(2):222-227. XI K, YAN C, HUANG Y, et al. Numerical simulation of individual components of pitch-damping coefficient sum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):222-227(in Chinese).
[62] 叶川, 马东立. 利用CFD技术计算飞行器动导数[J]. 北京航空航天大学学报, 2013, 39(2):196-200. YE C, MA D L. Aircraft dynamic derivatives calculation using CFD techniques[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):196-200(in Chinese).
[63] THEODORSEN T, GARRICK I. General potential theory of arbitrary wing sections[M]. New York:US Government Printing Office,1933:77-80.
[64] VUKELICH S R, WILLIAMS J E. The USAF stability and control digital DATCOM:AFFDL-TR-79-3032[R]. Ohio:WP-AFB, 1979.
[65] SCHUMMER J. A conceptual approach[J]. HYLE-International Journal for Philosophy of Chemistry, 1998, 4(2):129-162.
[66] ROSKAM J. Airplane design:Part 2-Preliminary configuration design and integration of the propulsion system[M]. Lawrence:DAR Corporation, 1985:86.
[67] WEINACHT P. Navier-Stokes predictions of the individual components of the pitch-damping sum[J]. Journal of Spacecraft and Rockets, 1998, 35(5):598-605.
[68] EAST R A, HUTT G R. Comparison of predictions and experimental data for hypersonic pitching motion stability[J]. Journal of Spacecraft and Rockets, 1988, 25(3):225-233.
[69] 赫姆施. 战术导弹空气动力学[M]. 北京:宇航出版社, 1999:57. HEMSCH M J. Tactical missile aerodynamics[M]. Beijing:Astronautics Press, 1999:57(in Chinese).
[70] 瞿章华. 高超音速飞行器空气动力学[M]. 长沙:国防科技大学出版社, 1999:105. QU Z H. Hypersonic vehicle aerodynamics[M]. Changsha:National University of Defence Technology Press, 1999:105(in Chinese).
[71] TONG B G, HUI W. Unsteady embedded Newton-Busemann flow theory[J]. Journal of Spacecraft and Rockets, 1986, 23:129-135.
[72] 飞机设计手册总编委会. 飞机设计手册:气动设计[M]. 北京:航空工业出版社, 2002:252. Aircraft Design Manual Editorial Board. Aircraft design manual:Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:252(in Chinese).
[73] 熊海泉, 刘昶, 郑本武. 飞机飞行动力学[M]. 北京:航空工业出版社, 1990:75. XIONG H Q, LIU C, ZHEN B W. Aircraft flight dynamics[M]. Beijing:Aviation Industry Press, 1990:75(in Chinese).
[74] ROSKAM J. Airplane design Part VI:Preliminary calculation of aerodynamic, thrust and power characteristics[M]. Kansas:Aviation and Engineering Corporation, 1990:253.
[75] TOBAK M, WEHREND W R. Stability derivatives of cones at supersonic speeds:NACA TN 3788[R]. Washington, D.C.:NACA, 1956.
[76] BUSEMANN A. Handw rterbuch der naturwissenschaften, IV, Flussigkeits-mnd garbewegung[M]. Zweite Auflage. Jena:Gustav Fische, 1933:12-55. BUSEMANN A. Handbook of natural sciences, IV, Liquid and garbewegung[M]. 2nd ed. Jena:Gustav Fischer, 1933:12-55(in German).
[77] MESSITER A F. Lift of slender delta wings according to newtonian theory[J]. AIAA Journal, 1963, 1(4):794-802.
[78] MAHOOD G, HUI W. Remarks on unsteady Newtonian flow theory[J]. Aeronautical Quarterly, 1976, 27(1):66-74.
[79] HUI W, TOBAK M. Unsteady Newton-Busemann flow theory. Part 2:Bodies of revolution[J]. AIAA Journal, 1981, 19(10):1272-1273.
[80] SEIFF A. Secondary flow fields embedded in hypersonic shock layers:NASA TN D-1304[R]. Washington, D.C.:NASA,1962.
[81] ERICSSON L E. Unsteady aerodynamics of an ablating flared body of revolution including effect of entropy gradient[J]. AIAA Journal, 1968, 6(5):2395-2401.
[82] ERICSSON L E. Unsteady embedded Newtonian flow (as basis for nose bluntness effect on aerodynamics of hypersonic slender bodies)[J]. Astronautica Acta, 1973, 18(3):309-330.
[83] 刘伟, 沈清. 钝倒锥体动导数数值工程模拟[J]. 国防科技大学学报, 1998, 20(1):5-8. LIU W, SHEN Q. Numerical and analytic simulation of the dynamic stability derivative of blunt cone[J]. Journal of National University of Defense Technology, 1998, 20(1):5-8(in Chinese).
[84] VAN DYKE M D. A study of second-order supersonic flow theory[J]. Technical Report Archive & Image Library, 1952, 9(1):1081-1125.
[85] LIGHTHILL M J. Oscillating airfoils at high Mach number[J]. Journal of the Aeronauticalences, 1953, 20(6):402-406.
[86] 陈劲松. 超声速和高超声速机翼俯仰导数——当地流活塞理论解法[J]. 空气动力学学报, 1991, 9(4):469-476. CHEN J S. Pitching derivatives of wing in supersonic and hypersonic stream-method for local flow piston theory[J]. Acta Arodynamica Sinica, 1991, 9(4):469-476(in Chinese).
[87] 张伟伟, 史爱民, 王刚, 等. 结合定常CFD技术的当地流活塞理论[C]//第十二届全国计算流体力学会议. 北京:中国力学学会, 2004:371-375. ZHANG W W, SHI A M, WANG G, et al. On determining unsteady aerodynamic loads accurately and efficiently[C]//Proceedings of the Twelfth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2004:371-375(in Chinese)
[88] ZHANG W W, YE Z Y, ZHANG C A, et al. Supersonic flutter analysis based on a local piston theory[J]. AIAA Journal, 2009, 47(10):2321-2328.
[89] 刘溢浪, 张伟伟, 田八林, 等. 一种超音速高超音速动导数的高效计算方法[J]. 西北工业大学学报, 2013, 31(5):824-828. LIU Y L, ZHANG W W, TIAN B L, et al. Effectively calculating supersonic and hypersonic dynamic derivatives[J]. Journal of Northwestern Polytechnical University, 2013, 31(5):824-828(in Chinese).
[90] HUI W H. Exact theory for the stability of an oscillating wedge in hypersonic and supersonic flows[D]. Southampton:University of Southampton, 1967:205.
[91] 刘伟, 赵海洋, 杨小亮. 飞行器动态气动特性数值模拟方法[M]. 长沙:国防科技大学出版社, 2015:172. LIU W, ZHAO H Y, YANG X L. Numerical simulation method for aerodynamic characteristics of aircraft[M]. Changsha:National University of Defense Technology Press, 2015:172(in Chinese).
[92] HUI W H, TOBAK M. Bifurcation analysis of aircraft pitching motions about large mean angles of attack[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(1):113-122.
[93] HUI W H, VAN ROESSEL H J. Transient motion of a hypersonic wedge, including time history effects[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(2):205-212.
[94] 刘秋生, 沈孟育. 球锥俯仰阻尼导数的数值计算[J]. 空气动力学学报, 1995, 13(2):132-142. LIU Q S, SHEN M Y. Calculation of damping-in-pitch derivatives of sphere-cone bodies[J]. Acta Aerodynamica Sinica, 1995, 13(2):132-142(in Chinese).
[95] 张才文. 超高超声速机翼俯仰导数的欧拉方程摄动解法[J]. 空气动力学学报, 1997, 15(3):400-405. ZHANG C W. Pitching stability derivatives of wing in supersonic and hypersonic flows-perturbation method for Euler equation[J]. Acta Aerodynamica Sinica, 1997, 15(3):400-405(in Chinese).
[96] 刘伟, 张鲁民. 钝体俯仰阻尼导数数值计算[J]. 空气动力学学报, 1997, 15(4):427-435. LIU W, ZHANG L M. Numerical calculation of damping-in-pitch derivatives of blunt body[J]. Acta Aerodynamica Sinica, 1997, 15(4):427-435(in Chinese).
[97] 刘伟, 张鲁民. 谐振摄动法求解钝体俯仰阻尼导数[C]//第八届全国计算流体力学会议. 北京:中国力学学会, 1996:297-301. LIU W, ZHANG L M. Resonant perturbation method for pitch damping derivatives of bluff body[C]//Proceedings of the Eighth National Conference for Computational Fluid Dynamics. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 1996:297-301(in Chinese).
[98] TOBAK M, SCHIFF L B. Generalized formulation of nonlinear pitch-yaw-roll coupling:Part I-Nonaxisymmetric bodies[J]. AIAA Journal, 1975, 13(3):323-326.
[99] SCHIFF L B. Nonlinear aerodynamics of bodies in coning motion[J]. AIAA Journal, 1972, 10(11):1517-1522.
[100] WEINACHT P, STUREK W B, SCHIFF L B. Navier-Stokes predictions of pitch-damping for axisymmetric shell using steady coning motion:ARL-TR-575[R]. Aberdeen Proving Ground, MD:U.S. Army Research Laboratory, 1994.
[101] WEINACHT P, STUREK W B. Computation of the roll characteristics of a finned projectile[J]. Journal of Spacecraft and Rockets, 1996, 33(6):769-775.
[102] DESPIRITO J, SILTON S I, WEINACHT P. Navier-Stokes predictions of dynamic stability derivatives:Evaluation of steady-state methods[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1142-1154.
[103] 张一帆, 李中武, 姚冰, 等. F12全机动态特性数值模拟[J]. 航空计算技术, 2015(2):22-25. ZHANG Y F, LI Z W, YAO B, et al. Dynamic derivative simulation of F12 aircraft configuration[J]. Aeronautical Computer Technique, 2015(2):22-25(in Chinese).
[104] 米百刚, 詹浩, 朱军. 基于CFD数值仿真技术的飞行器动导数计算[J]. 空气动力学学报, 2014, 32(6):834-839. MI B G, ZHAN H, ZHU J. Calculation of dynamic derivatives for aircraft based on CFD technique[J]. Acta Aerodynamica Sinica, 2014, 32(6):834-839(in Chinese).
[105] 米百刚, 詹浩, 朱军. 基于准定常假设的飞行器滚转动导数数值模拟[J]. 弹箭与制导学报, 2013, 33(3):21-24. MI B G, ZHAN H, ZHU J. A calculation method of rolling dynamic derivatives based on quasi-steady assumption[J]. Journal of Projectiles Rockets Missiles and Guidance, 2013, 33(3):21-24(in Chinese).
[106] 牟斌, 刘伟, 瞿章华. 倒锥体高超声速滚转阻尼导数数值模拟[C]//第十届全国高超声速气动力(热)学术交流会. 北京:中国空气动力学会, 1999:20-24. MOU B, LIU W, QU Z H. Numerical simulation of hypersonic cone roll damping derivative[C]//Proceedings of the National Hypersonic Aerodynamics (Heating) Conference. Beijing:Chinese Aerodynamics Research Society, 1999:20-24(in Chinese).
[107] BOELENS O, BADCOCK K, ELMILGUI A, et al. Comparison of measured and block structured simulation results for the F-16XL aircraft[J]. Journal of Aircraft, 2009, 46(2):377-384.
[108] 任玉新. 气动稳定性导数理论与计算方法[D]. 北京:清华大学, 1992:23-57. REN Y X. Theory and calculation method of aerodynamic stability derivatives[D]. Beijing:Tsinghua University, 1992:23-57(in Chinese).
[109] 孙涛, 高正红, 黄江涛. 基于CFD的动导数计算与减缩频率影响分析[J]. 飞行力学, 2011, 29(4):15-18. SUN T, GAO Z H, HUANG J T. Identify of aircraft dynamic derivatives based on CFD technology and analysis of reduce frequency[J]. Flight Dynamics, 2011, 29(4):15-18(in Chinese).
[110] WHEELER A J, GANJI A R, KRISHNAN V V, et al. Introduction to engineering experimentation[M]. Upper Saddle River, NJ:Prentice Hall, 1996:96.
[111] 刘绪, 赵云飞, 王东方, 等. 高超声速内外流一体化飞行器动态特性[J]. 弹道学报, 2013, 25(3):38-43. LIU X, ZHAO Y F, WANG D F, et al. Dynamic characteristics of hypersonic integrative vehicle with internal and external flow[J]. Journal of Ballistics, 2013, 25(3):38-43(in Chinese).
[112] BRANDON J M, FOSTER J V. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations:AIAA-1998-4447[R]. Reston:AIAA, 1998.
[113] 刘伟, 刘君, 柳军. 平衡气体效应对飞行器动态特性的影响研究[J]. 飞行力学, 2004, 22(4):65-68. LIU W, LIU J, LIU J. Investigation of equilibrium gas effect on dynamic characteristic of aerocraft[J]. Flight Dynamics, 2004, 22(4):65-68(in Chinese).
[114] 赵文文, 陈伟芳, 邵纯, 等. 考虑多种物理效应的钝锥俯仰稳定性参数影响分析[J]. 空气动力学学报, 2013, 31(4):442-448. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives considering different physical effects[J]. Acta Aerodynamica Sinica, 2013, 31(4):442-448(in Chinese).
[115] 童静, 夏露, 詹浩, 等. 考虑地面效应的翼型动态特性数值模拟[J]. 航空计算技术, 2014(3):88-91. TONG J, XIA L, ZHAN H, et al. Numerical simulation on unsteady flow around an oscillating airfoil with ground effect[J]. Aeronautical Computer Technique, 2014(3):88-91(in Chinese).
[116] 赵云飞, 刘绪, 涂国华, 等. 非定常Euler方程数值计算中高精度格式应用[J]. 国防科技大学学报, 2012, 34(3):12-16. ZHAO Y F, LIU X, TU G H, et al. High-accuracy numerical method applied to calculate unsteady Euler equations[J]. Journal of National University of Defense Technology, 2012, 34(3):12-16(in Chinese).
[117] 赵文文, 陈伟芳, 邵纯, 等. 高超声速钝锥体俯仰阻尼导数影响因素分析[J]. 国防科技大学学报, 2013, 35(1):43-47. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives calculation[J]. Journal of National University of Defense Technology, 2013, 35(1):43-47(in Chinese).
[118] 赵云飞. 高精度格式在非定常流动中的应用研究[D]. 长沙:国防科学技术大学, 2010:105-121. ZHAO Y F. Application studies of high-order accurate schemes to unsteady flows[D]. Changsha:National University of Defense Technology, 2010:105-121(in Chinese).
[119] CLARK W S, HALL K C. A time-linearized Navier-Stokes analysis of stall flutter[J]. Journal of Turbomachinery, 2000, 122(3):467-476.
[120] VAN DER WEIDE E, GOPINATH A, JAMESON A. Turbomachinery applications with the time spectral method:AIAA-2005-4905[R]. Reston:AIAA, 2005.
[121] DUFOUR G, SICOT F, PUIGT G, et al. Contrasting the harmonic balance and linearized methods for oscillating-flap simulations[J]. AIAA Journal, 2010, 48(4):788-797.
[122] BLANC F, ROUX F X, JOUHAUD J C. Harmonic-balance-based code-coupling algorithm for aeroelastic systems subjected to forced excitation[J]. AIAA Journal, 2010, 48(11):2472-2481.
[123] PECHLOFF A N, LASCHKA B. Small disturbance Navier-Stokes method:Efficient tool for predicting unsteady air loads[J]. Journal of Aircraft, 2006, 43(1):17-29.
[124] THOMAS J P, DOWELL E H, HALL K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations[J]. AIAA Journal, 2002, 40(4):638-646.
[125] THOMAS J, DOWELL E, HALL K, et al. Modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach[C]//Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2004:297-305.
[126] THOMAS J P, DOWELL E H, HALL K C. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach[J]. Journal of Aircraft, 2004, 41(6):1266-1274.
[127] THOMAS J P, DOWELL E H, HALL K C, et al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach:AIAA-2005-1917[R]. Reston:AIAA, 2005.
[128] HALL K C, THOMAS J P, DOWELL E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal, 2000, 38(10):1853-1862.
[129] THOMAS J P, CUSTER C H, DOWELL E H, et al. Unsteady flow computation using a harmonic balance approach implemented about the OVERFLOW 2 flow solver[C]//Proceedings of the 19th AIAA Computational Fluid Dynamics Conference, Computational Fluid Dynamics Conference. Reston:AIAA, 2009:308-321.
[130] THOMAS J P, CUSTER C H, DOWEL E H, et al. Compact implementation strategy for a harmonic balance method within implicit flow solvers[J]. AIAA Journal, 2013, 51(6):1374-1381.
[131] SPIKER M A, THOMAS J P, KIELB R E, et al. Modeling cylinder flow vortex shedding with enforced motion using a harmonic balance approach:AIAA-2006-1965[R]. Reston:AIAA, 2006.
[132] EKICI K, HALL K C. Nonlinear analysis of unsteady flows in multistage turbomachines using harmonic balance[J]. AIAA Journal, 2007, 45(5):1047-1057.
[133] EKICI K, HALL K C. Nonlinear frequency-domain analysis of unsteady flows in turbomachinery with multiple excitation frequencies[J]. AIAA Journal, 2008, 46(8):1912-1920.
[134] EKICI K, HALL K C, DOWELL E H. Computationally fast harmonic balance methods for unsteady aerodynamic predictions of helicopter rotors[J]. Journal of Computational Physics, 2008, 227(12):6206-6225.
[135] HUANG H, EKICI K. Stabilization of high-dimensional harmonic balance solvers using time spectral viscosity[J]. AIAA Journal, 2014, 52(8):1784-1794.
[136] ALONSO J J, MCMULLEN M, JAMESON A. Acceleration of convergence to a periodic steady state in turbomachinery flows[C]//AIAA 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. Reston:AIAA, 2001:58-69.
[137] MCMULLEN M, JAMESON A, ALONSO J. Application of a non-linear frequency domain solver to the Euler and Navier-Stokes equations:AIAA-2002-0120[R]. Reston:AIAA, 2002.
[138] MCMULLEN M, JAMESON A. The computational efficiency of non-linear frequency domain methods[J]. Journal of Computational Physics, 2005, 212(2):637-661.
[139] MCMULLEN M, JAMESON A, ALONSO J. Demonstration of nonlinear frequency domain methods[J]. AIAA Journal, 2006, 44(7):1428-1435.
[140] MOSAHEBI A, NADARAJAH S. An adaptive non-linear frequency domain method for viscous periodic steady state flows[C]//Proceedings of the 48th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings. Reston:AIAA, 2010:152-161.
[141] CHOI S, LEE K, POTSDAM M M, et al. Helicopter rotor design using a time-spectral and adjoint-based method[J]. Journal of Aircraft, 2014, 51(2):412-423.
[142] GUÉDENEY T, GOMAR A, GALLARD F, et al. Non-uniform time sampling for multiple-frequency harmonic balance computations[J]. Journal of Computational Physics, 2012, 236(2):317-345.
[143] RONCH D A, MCCRACKEN A J, BADCOCK K J, et al. Linear frequency domain and harmonic balance predictions of dynamic derivatives[J]. Journal of Aircraft, 2013, 50(3):694-707.
[144] HASSAN D, SICOT F. A time-domain harmonic balance method for dynamic derivatives predictions[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. Reston:AIAA, 2011:352-366.
[145] MURMAN S M, AFTOSMIS M J, BERGER M J. Numerical simulation of rolling airframes using a multilevel Cartesian method[J]. Journal of Spacecraft and Rockets, 2004, 41(3):426-435.
[146] MURMAN S M. Reduced-frequency approach for calculating dynamic derivatives[J]. AIAA Journal, 2007, 45(6):1161-1168.
[147] 李道春, 向锦武. 非线性二元机翼气动弹性近似解析研究[J]. 航空学报, 2007, 28(5):1080-1084. LI D C, XIANG J W. Nonlinear aeroelastic analysis of airfoil using quasi-analytical approach[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1080-1084(in Chinese).
[148] 杜鹏程, 宁方飞. 跨声风扇周向畸变流动的谐波平衡法计算[J]. 推进技术, 2012, 33(3):391-397. DU P C, NING F F. Numerical simulation of transonic fan under circumferential inlet distortion using harmonic balance method[J]. Journal of Propulsion Technology, 2012, 33(3):391-397(in Chinese).
[149] 许建华, 宋文萍, 王龙. 谐波平衡法在旋翼前飞绕流数值模拟中的应用研究[J]. 空气动力学学报, 2013, 31(5):546-552. XU J H, SONG W P, WANG L. Application of harmonic balance method in forward flight simulation for helicopter rotors[J]. Acta Aerodynamica Sinica, 2013, 31(5):546-552(in Chinese).
[150] 杨小权, 程苏堃, 杨爱明, 等. 基于时间谱方法的振荡翼型和机翼非定常黏性绕流数值模拟[J]. 航空学报, 2013, 34(4):787-797. YANG X Q, CHENG S K, YANG A M, et al. Time spectral method for numerical simulation of unsteady viscous flow over oscillating airfoil and wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):787-797(in Chinese).
[151] 谢立军, 杨云军, 刘周, 等. 基于时间谱方法的飞行器动导数高效计算技术[J]. 航空学报, 2013, 34(6):2016-2026. XIE L J, YANG Y J, LIU Z, et al. A high efficient method for computing dynamic derivatives of aircraft based on time spectral method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):2016-2026(in Chinese).
[152] 陈琦, 陈坚强, 谢昱飞, 等. 谐波平衡法在非定常流场中的应用[J]. 航空学报, 2014, 35(3):736-743. CHEN Q, CHEN J Q, XIE Y F, et al. Application of harmonic balance method to unsteady flow field[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):736-743(in Chinese).
[153] 陈琦, 陈坚强, 袁先旭, 等. 谐波平衡法在动导数快速预测中的应用研究[J]. 力学学报, 2014, 46(2):183-190. CHEN Q, CHEN J Q, YUAN X X, et al. Application of a harmonic balance method in rapid predictions of dynamic stability derivatives[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):183-190(in Chinese).
[154] RONCH A D. On the calculation of dynamic derivatives using computational fluid dynamics[D]. Liverpool:University of Liverpool, 2012:139.
[155] RONCH A D, VALLESPIN D, GHOREYSHI M, et al. Evaluation of dynamic derivatives using computational fluid dynamics[J]. AIAA Journal, 2012, 50(2):470-484.
[156] THOMPSON J R, FRINK N T, MURPHY P C. Guidelines for computing longitudinal dynamic stability characteristics of a subsonic transport:AIAA-2010-4819[R]. Reston:AIAA, 2010.
[157] BADCOCK K, RICHARDS B, WOODGATE M. Elements of computational fluid dynamics on block structure

文章导航

/