流体力学与飞行力学

气膜孔局部堵塞对叶片压力面冲击-扰流柱-气膜结构综合冷却效率的影响

  • 周君辉 ,
  • 张靖周
展开
  • 南京航空航天大学 能源与动力学院, 江苏省航空动力系统重点实验室, 南京 210016
周君辉 男, 博士研究生。主要研究方向:传热与两相流。 E-mail: zhoujunhui12345@163.com

收稿日期: 2015-09-15

  修回日期: 2015-11-03

  网络出版日期: 2016-03-28

基金资助

国家自然科学基金(51276090);江苏省研究生培养创新工程(CXLX13_166);中央高校基本科研业务费专项资金

Effects of partial blockage inside film holes on overall cooling effectiveness of an integrated impingement-fin-film cooling configuration on blade pressure side

  • ZHOU Junhui ,
  • ZHANG Jingzhou
Expand
  • Jingsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-09-15

  Revised date: 2015-11-03

  Online published: 2016-03-28

Supported by

National Natural Science Foundation of China (51276090); Funding of Jiangsu Innovation Program for Graduate Education (CXLX13_166);Fundamental Research Funds for the Central Universities

摘要

运用数值模拟方法研究了气膜孔局部堵塞对叶片压力面上射流冲击-扰流柱-气膜结构综合冷却效率的影响,重点分析了堵塞位置和堵塞比的影响。研究结果表明:无论是气膜孔内无堵塞还是存在局部堵塞情形,随着吹风比增大,综合冷却效率均呈现逐渐增大的趋势;在低的吹风比下,气膜孔出口-尾缘局部堵塞的综合冷却效率略低于无堵塞气膜孔,而在气膜孔进口-前缘和气膜孔出口-前缘的局部堵塞则导致综合冷却效率有较为轻微的上升;在高吹风比下,位于气膜孔出口-前缘和气膜孔进口-前缘的局部堵塞能够抑制气膜射流与主流相互作用所形成的卵形涡,从而冷却效率下降较少,而气膜孔出口-尾缘的局部堵塞则导致综合冷却效率降低较多;堵塞比对壁面沿程综合冷却效率的影响呈现非单调的变化趋势,这是由于冲击-扰流柱-气膜整体式冷却结构的冷却效果取决于内部强化传热和外部气膜防护的多重作用机制。

本文引用格式

周君辉 , 张靖周 . 气膜孔局部堵塞对叶片压力面冲击-扰流柱-气膜结构综合冷却效率的影响[J]. 航空学报, 2016 , 37(9) : 2729 -2738 . DOI: 10.7527/S1000-6893.2016.0067

Abstract

An investigation is performed numerically to reveal the effects of partial blockage inside film holes on the overall cooling effectiveness of an integrated impingement-fin-film cooling configuration on the blade pressure side, mainly focusing on the effects of blockage position and blockage ratio. The results show that the overall cooling effectiveness increases gradually with the increase of blowing ratio in both cases of no blockage and partial blockage film holes. With low blowing ratio, the partial blockage located at the trailing edge of film-hole exit decreases weakly the overall cooling effectiveness, whereas the partial blockage located at the other positions, including the leading edge of the film-hole inlet and the leading edge of the film-hole exit, increases the overall cooling effectiveness weakly. With high blowing ratio, the partial blockages located at the leading edge of the film-hole exit and the leading edge of the film-hole inlet could mitigate the kidney vortices due to the mainstream-coolant jet interaction, leading to a weak improvement of the overall cooling effectiveness, whereas the partial blockage located at the trailing edge of the film-hole exit results in reduction of overall cooling effectiveness to some extent. In general, the influence of the blockage ratio on the overall cooling effectiveness is not simple as the cooling effectiveness of the integrated impingement-fin-film configuration depends on multimechanisms of internal heat transfer enhancement and external film coverage.

参考文献

[1] BUNKER R S. Gas turbine heat transfer: Ten remaining hot gas path challenges[J]. ASME Journal of Turbomachinery, 2007, 129(2): 441-453.
[2] GILLESPIE D, WANG Z, IRELAND P, et al. Full surface local heat transfer coefficient measurements in a model of an integrally cast impingement cooling geometry[J]. ASME Journal of Turbomachinery, 1996, 120(1): 92-99.
[3] RHEE D H, CHOI J H, CHO H H. Flow and heat (mass) transfer characteristics in an impingement/effusion cooling system with crossflow[J]. ASME Journal of Turbomachinery, 2003, 125(1):74-82.
[4] HONG S K, RHEE D H, CHO H H. Effects of fin shapes and arrangements on heat transfer for impingement/effusion cooling with crossflow[J]. ASME Journal Heat Transfer, 2007, 129(12): 1697-1707.
[5] NAKAMATA C, MIMURA F, MATSUSHITA M, et al. Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration[C]//ASME Turbo Expo 2007: Power for Land, Sea and Air. New York: American Society of Mechanical Engineering, 2007: 23-34.
[6] ZHANG J Z, XIE H, YANG C F. Numerical study on of flow and heat transfer of impingement-effusion cooling[J]. Chinese Journal of Aeronautics, 2009, 22(4): 343-348.
[7] 杨谦, 林宇震, 张驰, 等. 发散冷却与冲击/发散冷却的冷却效率对比[J]. 航空动力学报, 2014, 28(2): 268-275. YANG Q, LIN Y Z, ZHANG C, et al. Cooling effectiveness comparison between effusion cooling and impingement/effusion cooling[J]. Journal of Aerospace Power, 2014, 28(2): 268-275(in Chinese).
[8] SHAN Y, ZHANG J Z, XIE G N. Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel[J]. International Journal of Heat and Mass Transfer, 2015, 86: 832-842.
[9] LELAND J E, PONNAPPAN R, KLASING K S. Experimental investigation of an air micro-jet array impingement cooling device[J]. Journal of Thermophysics & Heat Transfer, 2012,16(2): 187-192.
[10] LI P L, KO H S, JENG D Z, et al. Micro film cooling performance[J]. International Journal of Heat and Mass Transfer, 2009, 52(25): 5889-5894.
[11] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering Gas Turbines and Power, 1993, 115(3): 641-651.
[12] JOVANNVIC M B, DE LANGE H C, VAN STEENHOVEN A A. Influence of laser drilling imperfection on film cooling performances[C]// ASME Turbo Expo2005: Power for Land,Sea and Air. New York: American Society of Mechanical Engineers, 2005: 285-292.
[13] SUNDARAM N, THOLE K A. Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling[J]. ASME Journal of Turbomachinery, 2007, 129(3): 599-607.
[14] BUNKER R S. Effect of particle coating blockage on film cooling effectiveness: ASME Paper 2000-GT-0244[R]. New York: ASME, 2000.
[15] NA S, CUNHA F J, CHYU M K, et al. Effects of coating blockage and deposit on film-cooling effectiveness and surface heat transfer: AIAA-2006-0024[R]. Reston: AIAA, 2006.
[16] JOVANOVIC M B, DE LANGE H C, VAN STEENHOVEN A A. Influence of hole imperfection on jet cross flow interaction[J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 42-53.
[17] JOVANOVIC M B, DE LANGE H C, VAN STEENHOVEN A A. Effect of hole imperfection on adiabatic film cooling effectiveness[J]. International Journal of Heat and Fluid Flow, 2008, 29(2): 377-386.
[18] NASIR H, ACHARYA S, EKKAD S V. Improved film cooling from cylindrical angled holes with triangular tabs: Effect of tab orientations[J]. International Journal of Heat and Fluid Flow, 2003, 24(5): 657-668.
[19] YANG C F, ZHANG J Z. Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs[J]. Experimental Thermal and Fluid Science, 2012, 37: 113-120.
[20] PAN C X, ZHANG J Z, HUANG K N. Numerical investigation of partial blockage effect on film cooling effectiveness[J]. Mathematical Problems in Engineering, 2014(6): 1-13.
[21] SMITH C, BARKER B, CLUM C, et al. Deposition in a turbine cascade with combusting flow: ASME GT2010-22855[R]. New York: ASME, 2010.
[22] 周君辉, 张靖周. 涡轮叶栅内粒子沉积特性的数值研究[J]. 航空学报, 2013, 34(11): 2492-2499. ZHOU J H, ZHANG J Z. Numerical investigation on particle deposition characteristic inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2492-2499 (in Chinese).
[23] ARTS T, DE ROUVROIT M L, RUTHERFORD A W. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade: Technical Note 174[R]. New York: Von Karman Institute for Fluid Dynamics, 1990.

文章导航

/