一种复杂空间飞网系统参数优化设计方法
收稿日期: 2015-09-19
修回日期: 2015-11-03
网络出版日期: 2016-03-22
基金资助
中央高校基本科研业务费专项资金(YWF-13-ZY-02;YWF-14-FGC-024)
Parameter optimization design method of complex space-web system
Received date: 2015-09-19
Revised date: 2015-11-03
Online published: 2016-03-22
Supported by
The Fundamental Research Funds for the Central Universities (YWF-13-ZY-02; YWF-14-FGC-024)
由轻质软绳索编织而成的空间飞网是为非合作目标捕获而提出的空间系统概念,在空间碎片和废弃航天器处理方面具有很大的应用潜力。从平台抛射出后,飞网在空间形成不稳定的网形,且网形变化规律受初始参数设计的影响较大。针对空间飞网系统设计与试验中系统参数匹配问题,本文提出以容错值作为飞网展开性能的定量描述,从捕获任务的层面,建立面向捕获容错的空间飞网系统参数优化数学模型;以抓捕固定距离、确定大小的目标任务为算例,联合Isight优化平台与ANSYS/LS-Dyna求解,得到飞网系统最优参数匹配,算例仿真结果表明结果的适用性;最后,利用试验设计和极差分析方法验证最优点的稳定性。研究的模型与方法为开展空间飞网系统地面及空间试验等工程应用提供理论依据。
王晓慧 , 万长煌 , 夏人伟 . 一种复杂空间飞网系统参数优化设计方法[J]. 航空学报, 2016 , 37(10) : 3064 -3073 . DOI: 10.7527/S1000-6893.2016.0057
Space-web system woven by lightweight and pliable rope is a concept proposed for capturing non-cooperative target on orbits, and it has a great application prospect in dealing with space debris and dead spacecraft. After being thrown from a platform, it forms unstable configuration in space. Its deploying performance is greatly influenced by initial parameters. The optimization of parameter matching is a key technology for the space-web system design and test. The paper proposes error-tolerance as a quantitative description about the capturing performance of space-web system and establishes an optimization mathematical model where error tolerance is the objective function. Take capturing a target in a certain distance as an example, the Isight and ANSYS/LS-Dyna are combined to solve the mathematical model and the optimal design is obtained. The simulation of the optimal design verifies the validity of optimization model. Finally, the stability of the optimal design is discussed by orthogonal experiment and range analysis. The research provides some reference for the design of space-web system, the system tests on the ground and in space and the application of the space-web in the future.
Key words: space-web system; parameter matching; optimization model; error tolerance; DOE
[1] ANDERSON P V, SCHAUB H. Local orbital debris flux study in the geostationary ring[J]. Advances in Space Research, 2013, 51(12):2195-2206.
[2] KLINKRAD H, BENDISCH J, BUNTE K D, et al. The MASTER-99 space debris and meteoroid environment model[J]. Advances in Space Research, 2001, 28(9):1355-1366.
[3] YATES J M, SPANBAUER B W, BLACK J T. Geostationary orbit development and evaluation for space situational awareness[J]. Acta Astronautica, 2012, 81(1):256-272.
[4] SCHAUB H, MOORER D F, Jr. Geosynchronous large debris reorbiter:Challenges and prospects[J]. The Journal of the Astronautical Sciences, 2012, 59(1-2):161-176.
[5] TIBERT G, GARDSBACK M. Space webs final report:ACT-RPT-MAD-ARI-05-4109a[R]. Sweden:Advanced Concepts Team, ESA, 2006.
[6] MCKENZIE D, CARTMELL M, RADICE G, et al. Space webs final report:ACT-RPT-MAD-ARI-05-4109[R]. Sweden:Advanced Concepts Team, ESA, 2006:2-10.
[7] 李新刚, 裴胜伟. 国外航天器在轨捕获技术综述[J]. 航天器工程, 2013, 22(1):113-119. LI X G, PEI S W. On-orbit capture technology of spacecaft[J]. Space Engineering, 2013, 22(1):113-119(in Chinese).
[8] 崔乃刚, 王平, 郭继峰, 等. 空间在轨服务技术发展综述[J]. 宇航学报, 2007, 28(4):805-811. CUI N G, WANG P, GUO J F, et al. A review of on orbit servicing[J]. Journal of Astronautics, 2007, 28(4):805-811(in Chinese).
[9] 翟光, 仇越, 梁斌, 等. 在轨捕获技术发展综述[J]. 机器人, 2008, 30(5):467-480. ZHAI G, QIU Y, LIANG B, et al. Development of on-orbit capture technology[J]. Robot, 2008, 30(5):467-480(in Chinese).
[10] 邓宗全, 李龙, 李兵, 等. 空间抓取装置性能综合分析及评价[J]. 机械设计, 2012, 29(3):1-6. DENG Z Q, LI L, LI B, et al. Comprehensive analysis and evaluation on performance of space grappling device[J]. Journal of Machine Design, 2012, 29(3):1-6(in Chinese).
[11] 张玉军, 冯书兴. 主动式空间碎片清理研究[J]. 装备指挥技术学院学报, 2010, 21(6):78-82. ZHANG Y J, FENG S X. Research on active space debris removal[J]. Journal of the Academy of Equipment Command & Technology, 2010, 21(6):78-82(in Chinese).
[12] BONNAL C, RUAULT J M, DESJEAN M C. Active debris removal:Recent progress and current trends[J]. Acta Astronautica, 2013, 85(4):51-60.
[13] ANDRENUCCI M, PERGOLA P, RUGGIERO A. Active removal of space debris expanding foam application for active debris removal[R]. Toscana:University of Pisa, 2011:2-8.
[14] BISCHOF B, KERSTEI L N, STARKE J, et al. Roger-robotic geostationary orbit restorer[J]. Science and Technology Series, 2004, 109:183-193.
[15] ANSELMO L, PARDINI C. Space debris mitigation in geosynchronous orbit[J]. Advances in Space Research, 2008, 41(7):1091-1099.
[16] XU W F, LIANG B, GAO D, et al. A space robotic system used for on-orbit servicing in the geostationary orbit[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2010:4089-4094.
[17] XU W F, LIANG B, LI B, et al. A universal on-orbit servicing system used in the geostationary orbit[J]. Advances in Space Research, 2011, 48(1):95-119.
[18] BERGAMIN L, IZZO D. Comments on deployment and control of charged space webs:ACT-RPT-MAD-ARI-05-4109[R].Sweden:Advanced Concepts Team, ESA, 2007:2-4.
[19] MANKALA K K, AGRAWAL S K. Dynamic modeling and simulation of impact in tether net gripper systems[J]. Multibody System Dynamics, 2004, 11(3):235-250.
[20] MANKALA K K, AGRAWAL S K. Dynamic modeling and simulation of satellite tethered systems[J]. Journal of Vibration and Acoustics, 2005, 127(2):144.
[21] YU Y, BAOYIN H X, LI J F. Dynamic modelling and analysis of space webs[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(4):783-791.
[22] HUANG P F, ZHANG F, MA J, et al. Dynamics and configuration control of the maneuvering-net space robot system[J]. Advances in Space Research, 2015, 55(4):1004-1014.
[23] ASLANOV V, YUDINTSEV V. Dynamics of large space debris removal using tethered space tug[J]. Acta Astronautica, 2013, 91(10):149-156.
[24] ZHAI G, QIU Y, LIANG B, et al. On-orbit capture with flexible tether-net system[J]. Acta Astronautica, 2009, 65(5-6):613-623.
[25] BAOYIN H X, YU Y, LI J F. Orbital maneuver for a rotating tethered system via tidal forces[J]. Journal of Spacecraft and Rockets, 2013, 50(5):1060-1068.
[26] GÄRDSBACK M, TIBERT G. Deployment control of spinning space webs[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):40-50.
[27] JIA J, WANG Y. Simulation of fiexible net capture process for space debris[J]. Spacecraft Environment Engineering, 2014, 31(2):136-140.
[28] 陈钦, 杨乐平. 空间绳网系统发射动力学问题研究[J]. 宇航学报, 2009, 30(5):1829-1833. CHEN Q, YANG L P. Research on casting dynamics of orbital net systems[J]. Journal of Astronautics, 2009, 30(5):1829-1833(in Chinese).
[29] 陈钦. 空间绳网系统设计与动力学研究[D]. 长沙:国防科学技术大学, 2010:67-98. CHEN Q. Design and dynamic of an orbital net-capture system[D]. Changsha:National University of Defense Technology, 2010:67-98(in Chinese).
[30] 李强. 空间绳系卫星系统动力学建模及仿真研究[D]. 长沙:国防科学技术大学, 2007:20-45. LI Q. Study on space tethered satellite system dynamic modeling and simulating[D]. Shangsha:National University of DefenseTechnology, 2007:20-45(in Chinese).
[31] 赵国伟, 熊会宾, 黄海, 等. 柔性绳索体展开过程数值模拟及实验[J]. 航空学报, 2009, 30(8):1429-1434. ZHAO G W, XIONG H B, HUANG H, et al. Simulation and experiment on deployment process of flexible rope[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1429-1434(in Chinese).
[32] ROGER-Team.ROGER-Phase A final report executive summary[R]. Sweden:Advanced Concepts Team, ESA, 2003.
[33] PALMERINI G B, SGUBINI S, SABATIN M I. Space webs based on rotating tethered formations[J]. Acta Astronautica, 2009, 65(1-2):131-145.
[34] FUJIWARA J, SEGAWA S, ODA K, et al. Static loading tests and a computational model of a flexible net[C]//Extended Abstracts of International Symposium on New Olympics New Shell and Spatial Structures. Tokyo:Architectural Institute of Japan, 2007:66-72.
[35] 陈钦, 杨乐平, 张青斌. 空间飞网发射动力学建模仿真研究与地面试验[J]. 国防科技大学学报, 2009, 31(3):16-19. CHEN Q, YANG L P, ZHANG Q B. Dynamic model and simulation of orbital net casting and ground test[J]. Journal of National University of Defense Technology, 2009, 31(3):16-19(in Chinese).
[36] 李京阳, 于洋, 宝音贺西. 空间飞网系统抛射参数优化研究[J]. 宇航学报, 2012, 33(6):823-829. LI J Y, YU Y, BAOYIN H X. Projecting parameters optimization for space web systems[J]. Journal of Astronautics, 2012, 33(6):823-829(in Chinese).
[37] 李京阳, 于洋, 宝音贺西, 等. 空间飞网两种动力学模型的比较研究[J]. 力学学报, 2011, 43(3):542-551. LI J Y, YU Y, BAOYIN H X, et al. Simulation and comparison of different dynamical models of space webs[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3):542-551(in Chinese).
[38] WANG X H, WAN C H, SUN C C, et al. An optimization algorithm for multi-objective optimization problem by using envelope-dual method[J]. Procedia Engineering, 2013, 67:457-466.
[39] 王晓慧, 樊思思, 李人杰. 改进的螺栓连接结构建模方法及其在导弹设计中的应用[J]. 固体火箭技术, 2014, 37(5):694-698. WANG X H, FAN S S, LI R J. A modified modeling method of bolted connection andits application to the missile design[J]. Journal of Solid Rocket Technology, 2014, 37(5):694-698(in Chinese).
/
〈 |
|
〉 |