CRM翼/身/平尾组合体模型高阶精度数值模拟
收稿日期: 2016-01-20
修回日期: 2016-03-14
网络出版日期: 2016-03-21
基金资助
国家重点研发计划(2016YFB0200700)
High-order precision numerical simulation of CRM wing/body/horizontal tail model
Received date: 2016-01-20
Revised date: 2016-03-14
Online published: 2016-03-21
Supported by
National Key Research and Development Program (2016YFB0200700)
基于五阶空间离散精度的WCNS格式,开展了CRM翼/身/平尾组合体模型的高阶精度数值模拟,以评估WCNS格式对复杂外形的模拟能力以及典型运输机巡航构型阻力预测方面的精度。首先依照DPW组委会提出的网格生成指导原则,利用ICEM软件生成了粗、中、细3套网格,对应的y+分别为1、2/3和4/9。通过对CRM模型的计算和分析,研究了网格规模对气动特性、压力分布和翼根后缘局部分离区的影响。通过与DPW4统计结果和部分实验结果的对比,高阶精度数值模拟结果表明,本文的气动特性计算结果与统计平均结果吻合较好;网格密度对机翼内侧的展向站位压力分布影响较小,对机翼外侧展向压力分布影响较大;网格密度对翼根后缘局部分离区略有影响。
王运涛 , 孙岩 , 孟德虹 , 王光学 . CRM翼/身/平尾组合体模型高阶精度数值模拟[J]. 航空学报, 2016 , 37(12) : 3692 -3697 . DOI: 10.7527/S1000-6893.2016.0080
High-order numerical simulation on common research model (CRM) wing/body/horizontal tail model is presented with the fifth-order WCNS scheme to assess the ability of high-order WCNS scheme on complex configuration simulation and the precision of predicating cruise drag of transonic configuration. Three grids (coarse, medium and fine) are created with software ICEM according to the gridding guidelines provided by Drag Prediction Workshop (DPW) organizing committee, and the y+ of the three grids are 1, 2/3 and 4/9. Computation and analysis on three grids are carried out to investigate the grid effect on aerodynamic characteristics, pressure distribution and the local separation bubble at the wing root trailing edge. Compared to the statistic results from DPW4 and some experimental data from NTF, the high-order numerical results show that the computational results of aerodynamic characteristics agree well with statistic data; the grid density has little influence on pressure distribution on the inboard stations, whereas it has some influence on the outboard stations; the grid density has some influence on the size of the local separation bubble at the wing root trailing edge.
[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston:AIAA, 2008.
[7] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[8] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[9] DENG X G, ZHANG H X. Developing high-order werighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[10] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[11] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[12] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[13] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese).
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[16] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU-SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[17] MORRISON J H. Statistical analysis of CFD solutions from the fourth AIAA drag prediction workshop:AIAA-2010-4673[R]. Reston:AIAA, 2010.
[18] RIVERS M B, DITTBERNER A. Experimental investigation of the NASA common research model(invited):AIAA-2010-4218[R]. Reston:AIAA, 2010.
[19] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston:AIAA, 2012.
[20] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of he support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston:AIAA, 2012.
/
〈 | 〉 |