流体力学与飞行力学

弹性飞机跨声速机动载荷计算方法

  • 张辉 ,
  • 李杰
展开
  • 西北工业大学 航空学院, 西安 710072
张辉,男,博士研究生。主要研究方向:理论与计算流体力学,气动弹性力学。Tel.:13991164363,E-mail:zhanghui_0104@126.com;李杰,男,博士,教授,博士生导师。主要研究方向:理论与计算流体力学,设计空气动力学。Tel.:13679258367,E-mail:lijieruihao@163.com

收稿日期: 2015-12-28

  修回日期: 2016-03-08

  网络出版日期: 2016-03-17

基金资助

国家自然科学基金(11172240);航空科学基金(2014ZA53002);国家“973”计划(2015CB755800)

Maneuver load analysis for flexible aircraft in transonic flow

  • ZHANG Hui ,
  • LI Jie
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-12-28

  Revised date: 2016-03-08

  Online published: 2016-03-17

Supported by

National Natural Science Foundation of China (11172240); Aeronautical Science Foundation of China (2014ZA53002); National Basic Research Program of China (2015CB755800)

摘要

基于跨声速非定常气动力求解的重叠场源法,开展了弹性飞机跨声速机动载荷计算方法研究,为现代飞机结构强度设计提供更加可靠和精确的临界载荷计算方法。首先通过采用重叠场源法求解关于62%根弦俯仰振荡的LANN机翼在马赫数为0.822的非定常气动力并与实验结果进行对比,验证了重叠场源法对跨声速激波效应预测和非定常气动力计算的能力;其次应用频域气动力有理近似技术拟合场源法计算得到的广义气动力系数矩阵,建立了机动载荷分析的状态空间模型;然后完成了某型民用飞机俯仰机动载荷分析,研究了俯仰机动飞行情况下飞机机体状态量及飞机部件载荷响应规律。计算结果表明:考虑机体弹性变形后,机翼和平尾气动载荷响应最大值分别减小了5.1%和10.6%,升降舵气动载荷响应最大值增大了16.2%,在飞机结构强度设计中必须考虑机体弹性效应对飞机部件载荷的影响。

本文引用格式

张辉 , 李杰 . 弹性飞机跨声速机动载荷计算方法[J]. 航空学报, 2016 , 37(11) : 3236 -3248 . DOI: 10.7527/S1000-6893.2016.0070

Abstract

Based on the overset field-panel method for computing unsteady aerodynamics in transonic flows, the calculation approach of maneuver load for flexible aircraft in transonic flows is developed, for the purpose of providing expedient and accurate critical loads for the design in structural strength of modern aircraft. The LANN wing in pitch mode about 62% root chord at Mach number 0.822 is solved to validate the unsteady pressure coefficient with the experimental data, and excellent agreement shows the capability of the overset field-panel method in predicting the shock location and strength. State space model for analyzing maneuver loads is generated through rational aerodynamic approximations, then the transient load analysis of a transport aircraft in pitching is conducted to investigate the response of the airframe states and loads acting on the components of the aircraft. The results indicate that the peak loads acting on the wing and horizontal tail decrease by 5.1% and 10.6% respectively, while one on the elevator increases by 16.2%, due to the structural deformation. Therefore, the effect of structural deformation on loads must be considered in the design concerning structural strength of modern aircraft.

参考文献

[1] 万志强, 唐长虹, 邹丛青. 柔性复合材料前掠翼飞机静气动弹性分析[J]. 复合材料学报, 2002, 19(5):118-124. WAN Z Q, TANG C H, ZOU C Q. Static aeroelastic characteristics analysis of a flexible forward-sweep composite aircraft[J]. Acta Materiae Compositae Sinica, 2002, 19(5):118-124(in Chinese).
[2] KIER T M. Comparison of unsteady aerodynamic modelling methodologies with respect to flight loads analysis:AIAA-2005-6027[R]. Reston:AIAA, 2005.
[3] PETERSSON O, LEITNER M, STROSCHER F. Structure optimization framework for aircraft subject to transient maneuver and gust loads:AIAA-2010-9122[R]. Reston:AIAA, 2010.
[4] RAVEH D E. Maneuver load analysis of overdetermined trim systems:AIAA-2007-1985[R]. Reston:AIAA, 2007.
[5] FLANSBURG B. Maneuver loads simulation for an advanced transport aircraft:AIAA-2008-1906[R]. Reston:AIAA, 2008.
[6] MEIROVITCH L, TUZCU I. Time simulations of the response of maneuvering flexible aircraft[J]. Journal of Guidance, and Dynamics, 2004, 27(5):814-828.
[7] 彭小忠. 大型飞机飞行载荷计算方法[J]. 民用飞机设计与研究, 2004(3):12-20. PENG X Z. Calculation method about flight loads of large aircraft[J]. Civil Aircraft Design and Research, 2004(3):12-20(in Chinese).
[8] 彭小忠, 邱传仁. 大型飞机载荷计算中的气动弹性修正方法[J]. 民用飞机设计与研究, 1998(1):8-14. PENG X Z, QIU C R. Correction method for flight loads of large aircraft considering aeroelastics[J]. Civil Aircraft Design and Research, 1998(1):8-14(in Chinese).
[9] 彭小忠, 邱传仁. 飞机载荷临界情况筛选方法[J]. 民用飞机设计与研究, 1998(2):17-22. PENG X Z, QIU C R. Method of screening critical loads of aircraft[J]. Civil Aircraft Design and Research, 1998(2):17-22(in Chinese).
[10] 彭小忠, 邱传仁. 大型运输类飞机部件分布载荷计算方法[J]. 民用飞机设计与研究, 1999(2):11-19. PENG X Z, QIU C R. Calculation method on distribution loads of large transport aircraft[J]. Civil Aircraft Design and Research, 1999(2):11-19(in Chinese).
[11] 杨超, 王立波, 谢长川, 等. 大变形飞机配平与飞行载荷分析方法[J]. 中国科学:技术科学, 2012, 42(10):1137-1147. YANG C, WANG L B, XIE C C, et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations[J]. Scientia Sinica (Technologica), 2012, 42(10):1137-1147(in Chinese).
[12] CHEN P C, GAO X W, Tang L. An overset field-panel method for unsteady transonic aerodynamic influence coefficient matrix generation:AIAA-2004-1512[R]. Reston:AIAA, 2004.
[13] CHEN P C, GAO X W, TANG L. Overset field-panel method for unsteady transonic aerodynamic influence coefficient matrix generation[J]. AIAA Journal, 2004, 42(9):1775-1787.
[14] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese).
[15] LIU D, KAO Y F, FUNG K Y. An efficient method for computing unsteady transonic aerodynamic of swept wings with control surface[J]. Journal of Aircraft, 1998, 25(1):25-31.
[16] KRIST S L, BIEDRON T, RUMSEY C L. CFL3D user's manual (Version 5.0):NASA/TM-1998-208444[R]. Washington, D.C.:NASA, 1998.
[17] LU S, VOSS R. TDLM-A transonic doublet lattice method for 3D potential unsteady transonic flow computation:DLR-FB 92-95[R]. Goettingen, FRG:DLR Institute fur Aeroelastik, 1992.
[18] STEIGINGA A, HOUWINK R. Correlation of experimental and quasi-3D theoretical airloads on the osillating LANN supercritical wing model:AFWAL-TR-83-3050[R]. Amsterdam:National Aerospace Lab, 1983.
[19] SMITH T A, HAKANSON J W, NAIR S S, et al. State-space model generation for flexible aircraft[J]. Journal of Aircraft, 2004, 41(6):1473-1481.
[20] MOR M, LIVNE E. State-space unsteady aerodynamic for aeroservoelastic configuration shape optimization of flight vehicles:AIAA-2004-1762[R]. Reston:AIAA, 2004.
[21] SUH P M, CONYERS H J, MAVRIS D N. Rapid state space modeling tool for rectangular wing aeroservoelastic studies:AIAA-2015-1135[R]. Reston:AIAA, 2015.
[22] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展和挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Program and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[23] 宋晨, 杨超, 吴志刚. 3种气动弹性状态空间建模方法的对比[J]. 航空学报, 2007, 28(S1):82-86. SONG C, YANG C, WU Z G. Comparison of three aeroelastic state space modeling methods[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1):82-86(in Chinese).
[24] BALDELLI D H, CHEN P C, PANZA J. Unified aeroelastic and flight dynamic formulation via rational function approximations[J]. Journal of Aircraft, 2006, 43(3):763-772.

文章导航

/