间隙变化对压气机静叶叶栅气动性能的影响
收稿日期: 2015-12-09
修回日期: 2016-03-07
网络出版日期: 2016-03-14
基金资助
国家自然科学基金(50906080)
Influence of clearance variation on aerodynamic performance of a compressor stator cascade
Received date: 2015-12-09
Revised date: 2016-03-07
Online published: 2016-03-14
Supported by
National Natural Science Foundation of China (50906080)
利用压气机平面叶栅试验,在大负攻角工况、设计工况和角区失速工况下,研究间隙变化对叶栅气动性能的影响,并分析内部流动变化与气动性能变化的关联。试验结果表明,不同工况下间隙变化对流场结构的影响不同,因而对叶栅性能的影响规律也不同。大负攻角工况下,不同间隙叶栅内在压力面前缘附近都存在一对由端壁向叶展中部发展的分离涡,间隙增大可以使叶栅总损失近似线性减小,并使间隙侧气流折转能力略微提升。设计工况下,无间隙侧吸力面角区存在轻微的角区分离,小间隙(0.2%展长)的引入首先会加剧间隙侧角区分离,当间隙进一步增大时,角区分离消失并形成泄漏涡结构。叶栅总损失随间隙增大呈先增大后减小再增加的趋势,角区分离的消除有助于提高间隙侧气流折转能力。角区失速工况下,间隙的引入可以削弱并移除间隙侧角区失速结构,从而使叶栅总损失下降,并在0.5%展长间隙时达到最小值,同时间隙侧气流折转能力得到增强。当间隙进一步增大时,叶栅损失变化不大。在间隙变化过程中,两侧端部流动结构产生相互影响,使两侧流场性能变化呈相反趋势。通过对比全工况范围内的气动性能,叶栅在选取0.5%展长间隙时整体性能最优。
王子楠 , 耿少娟 , 张宏武 . 间隙变化对压气机静叶叶栅气动性能的影响[J]. 航空学报, 2016 , 37(11) : 3304 -3316 . DOI: 10.7527/S1000-6893.2016.0066
In this paper, a linear compressor cascade is used to experimentally investigate the influence of clearance variation on the flow structures and cascade aerodynamic performance at the highly negative angle of attack, design condition and corner stall condition. The association between the flow structure and cascade performance is also analyzed. The experimental results show that the influence of clearance variation on flow structures and cascade performance is different at different working conditions. At highly negative angle of attack, a pair of three-dimensional separation vortexes near the pressure-side leading edge is originated from the end wall in different clearance cascades. With the increase of clearance size, the cascade total pressure loss decreases, and the clearance side cascade turning ability is slightly increased. At design condition, a slight corner separation exists between blade suction surface and end wall. By bringing in a small clearance (0.2% span), corner separation is first aggravated. As the clearance size continues to increase, the corner separation can be eliminated, and leakage vortex is formed. With the increase of clearance size, the cascade total pressure loss first increases, then decreases and finally goes up again. The elimination of corner separation will improve clearance side cascade flow turning ability. At corner stall condition, the introduction and increase of clearance can impair and eliminate the corner stall structure, and thus the cascade loss decreases and reaches the minimum value with a 0.5% span clearance size. But the cascade loss almost remains the same as clearance continues to increase. Flow structures at both enwalls can influence each other as clearance varies, and the change trends of performance near two end walls are opposite. By comparing the overall cascade aerodynamic performance at all working conditions, the 0.5% span clearance cascade shows an optimal performance.
[1] 蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34(29):5096-5102. JIANG H D, REN J, LI X Y, et al. Status and development trend of the heavy duty gas turbine[J]. Proceedings of the CSEE, 2014, 34(29):5096-5102(in Chinese).
[2] 刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8):2563-2576. LIU Y Q, LIU T Q, JI L C. Some problem and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2563-2576(in Chinese).
[3] FREEMAN C. Effect of tip clearance flow on compressor stability and engine performance:VKILS-1985-05[R]. Brussels:VKILS, 1985.
[4] SWOBODA M, IVEY P C, WENGER U, et al. An experimental examination of cantilevered and shrouded stators in a multistage axial compressor:ASME-98-GT-282[R]. New York:ASME, 1998.
[5] CAMPOBASSO M S, MATTHESIS A, WENGER U, et al. Complementary use of CFD and experimental measurements to assess the impact of shrouded and cantilevered stators in axial compressors:ASME-GT-208[R]. New York:ASME, 1999.
[6] 蔡睿贤, 王锡刚, 彭惠君, 等. 静叶内围带对轴流式压气机气动性能的影响及4500马力机车燃气轮机的热力性能[J]. 工程热物理学报, 1980, 1(1):3-9. CAI R X, WANG X G, PENG H J, et al. Influence of stator shroud on aerodynamic performance of axial-flow compressor and thermodynamic test results of a 4500 HP locomotive gas turbine[J]. Journal of Engineering Thermophysics, 1980, 1(1):3-9(in Chinese).
[7] LANGE M, MAILACH R, VOGELER K. An experimental investigation of shrouded and cantilevered stators at varying clearance sizes:ASME-GT2010-22106[R]. New York:ASME, 2010.
[8] DONG Y, GALLIMORE S J, HODSON H P. Three dimensional flows and loss reduction in axial compressors[J]. Journal of Turbomachinery, 1987, 109(3):354-361.
[9] YOON S, SELMEIER R, CARGILL P, et al. Effect of the stator hub configuration and stage design parameters on aerodynamic loss in axial compressors[J]. Journal of Turbomachinery, 2015, 137(9):091001-1-091001-10.
[10] KEY N. PIV Study of negative incidence stator unsteady aerodynamics:AIAA-2002-0014[R]. Reston:AIAA, 2002.
[11] HOWARD J. Sub-idle modelling of gas turbines:altitude relight and windmilling[D]. Bedfordshire:Cranfield University, 2007:23-30.
[12] ZACHOS P K, GRECH N, CHARNLEY B, et al. Experimental and numerical investigation of a compressor cascade at highly negative incidence[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(1):26-36.
[13] HORLOCK J H, LOUIS J F, PERCIVAL P M E, et al. Wall stall in compressor cascades[J]. Journal of Basic Engineering, 1966, 88(3):637-648.
[14] LEI V M, SPAKOVSZKY Z S, GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery, 2008, 130(3):031006-1-031006-10.
[15] MCDOUGAL N M. A comparison between the design point and near-stall performance of an axial compressor[J]. Journal of Turbomachinery, 1990, 112(1):109-115.
[16] 王子楠, 高磊, 耿少娟, 等. 不同端壁间隙下压气机平面叶栅角区流动的数值模拟和试验研究[J]. 工程热物理学报, 2015, 36(7):1428-1432. WANG Z N, GAO L, GENG S J, et al. Numerical and experimental investigation on corner flow structure in a planar compressor cascade with different clearances[J]. Journal of Engineering Thermophysics, 2015, 36(7):1428-1432(in Chinese).
/
〈 | 〉 |