一种步进频率信号认知雷达波形优化设计方法
收稿日期: 2015-09-30
修回日期: 2016-03-03
网络出版日期: 2016-03-14
基金资助
国家自然科学基金(61471386);中国博士后科学基金(2015M570815)
A waveform optimization designing method for cognitive radar with stepped-frequency signal
Received date: 2015-09-30
Revised date: 2016-03-03
Online published: 2016-03-14
Supported by
National Natural Science Foundation of China (61471386); China Postdoctoral Science Foundation (2015M570815)
认知雷达常用于完成探测、跟踪、成像及识别等多重任务,为提高其综合性能,需兼顾多方面因素研究其波形优化设计问题。基于此,提出一种基于压缩感知(CS)RIPless准则的步进频率信号认知雷达波形优化设计方法。首先,建立了目标回波信号稀疏模型,分析了其与发射信号模糊函数之间的关系。其次,根据模型中观测矩阵的构造,基于RIPless准则,将波形设计问题转化为概率分布的互相干参数及其协方差矩阵的条件数的优化问题,从而通过自适应寻优算法,获得优化的步进频率信号脉冲重复时间间隔序列和子脉冲频率序列。相较于传统方法,所提方法在信号发射与接收之间形成了信息实时反馈和信号优化重构的闭环,在高概率准确重构目标径向一维距离像的同时,也实现了发射信号模糊函数的优化。最后,仿真计算验证了所提方法的有效性。
陈春晖 , 张群 , 罗迎 . 一种步进频率信号认知雷达波形优化设计方法[J]. 航空学报, 2016 , 37(7) : 2276 -2285 . DOI: 10.7527/S1000-6893.2016.0063
Cognitive radar is applied to diverse tasks, such as searching, tracking, imaging and recognition. To improve its comprehensive performance, various factors need to be considered to optimize the waveform. In this paper, a waveform optimization method for cognitive radar with stepped-frequency signal is proposed based on the RIPless compressed sensing (CS). Firstly, a sparse model of echo signal is established and the relationship between this model and the ambiguity function of transmitting signal is also analyzed. Secondly, on the basis of the RIPless compressed sensing, the waveform design translates to the optimization for the correlation coefficients and the covariance matrix condition numbers of a certain distribution. Then, the optimized pulse repetition intervals and carrier frequencies can be obtained through an adaptive optimal algorithm. Compared with the traditional method, a closed loop from information feedback to reconstruction between the signal transmitting and receiving is developed. Moreover, it can reconstruct the target one dimensional radial range profiles accurately with high probability and optimize the ambiguity function of transmitting signal simultaneously. Finally, the effectiveness of the proposed method is proved by simulations.
[1] HAYKIN S. Cognitive radar:A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1):30-40.
[2] COCHRAN D, SUVOROVA S, HOWARD S D, et al. Waveform libraries[J]. IEEE Signal Processing Magazine, 2009, 26(1):12-21.
[3] SIRA S P, LI Y, PAPANDREOU-SUPPAPPOLA A, et al. Waveform-agile sensing for tracking[J]. IEEE Signal Processing Magazine, 2009, 26(1):53-64.
[4] 赵宜楠, 李风从, 王军, 等. 基于秩亏傅里叶变换的交替投影编码波形设计[J]. 电子学报, 2014, 42(6):1216-1219. ZHAO Y N, LI F C, WANG J, et al. Coded waveform design via alternating projection based on rank deficient Fourier Transform[J]. Acta Electronica Sinica, 2014, 42(6):1216-1219(in Chinese).
[5] 周宇, 张林让, 赵珊珊. 组网雷达低自相关旁瓣和互相关干扰的稀疏频谱波形设计方法[J]. 电子与信息学报, 2014, 36(6):1394-1399. ZHOU Y, ZHANG L R, ZHAO S S. Sparse frequency waveforms design with low correlation side-lobes for netted radar[J]. Journal of Electronics & Information Technology, 2014, 36(6):1394-1399(in Chinese).
[6] 庄珊娜, 贺亚鹏, 朱晓华. 低距离旁瓣稀疏频谱波形相位编码设计[J]. 电子与信息学报, 2012, 34(5):1088-1095. ZHUANG S N, HE Y P, ZHU X H. Phase coding for sparse frequency waveform with low range side-lobes[J]. Journal of Electronics & Information Technology, 2012, 34(5):1088-1095(in Chinese).
[7] 唐波.宽带认知雷达低峰均比波形快速设计算法[J].航空学报, 2015, 37(2):688-694. TANG B. Efficient design of low PAR waveform for wideband cognitive radar[J]. Acta Aeronautica et Astronautica Sinica, 2015, 37(2):688-694(in Chinese).
[8] 蒋敏, 黄建国, 韩晶. MIMO阵列恒定包络波形设计[J]. 电子学报, 2011, 39(9):2194-2199. JIANG M, HUANG J G, HAN J. Constant envelope waveform design for MIMO array[J]. Acta Electronica Sinica, 2011, 39(9):2194-2199(in Chinese).
[9] WASEEM K, IJAZ M Q, KIRAN S. Ambiguity function of phased-MIMO radar with collocated antennas and its properties[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7):1220-1224.
[10] CUI G L, LI H B, RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2):343-353.
[11] 贺亚鹏, 朱晓华, 李洪涛, 等. 噪声干扰背景下压缩感知雷达波形优化设计[J]. 电子学报, 2014, 42(3):469-476. HE Y P, ZHU X H, LI H T, et al. Waveform design for compressive sensing radar in the presence of interference and noise[J]. Acta Electronica Sinica, 2014, 42(3):469-476(in Chinese).
[12] 张劲东, 张弓, 潘汇, 等. 基于滤波器结构的压缩感知雷达感知矩阵优化[J]. 航空学报, 2013, 34(4):864-872. ZHANG J D, ZHANG G, PAN H, et al. Optimized sensing matrix design of filter structure based compressed sensing radar[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):864-872(in Chinese).
[13] LIU Z, WEI X Z, LI X. Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing[J]. IEEE Sensors Journal, 2013, 13(7):2523-2534.
[14] 何劲, 罗迎, 张群, 等. 随机线性调频步进雷达波形设计及成像算法研究[J]. 电子与信息学报, 2011, 33(9):2068-2075. HE J, LUO Y, ZHANG Q, et al. Waveform design and imaging algorithm research of random frequency stepped chirp signal ISAR[J]. Journal of Electronics and Information Technology, 2011, 33(9):2068-2075(in Chinese).
[15] HUANG T Y, LIU Y M, MENG H D, et al. Cognitive random stepped frequency radar with sparse recovery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2):858-870.
[16] LUO Y, ZHANG Q, HONG W, et al. Waveform design and high-resolution imaging of cognitive radar based on compressive sensing[J]. Science China Information Sciences, 2012, 55(11):2590-2603.
[17] YANG J, HUANG X, JIN T, et al. Synthetic aperture radar imaging using stepped frequency waveform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):2026-2036.
[18] CANDES E, PLAN Y. A probabilistic and RIPless theory of compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(11):7235-7254.
[19] KUENG R, GROSS D. RIPless compressed sensing from anisotropic measurements[J]. Linear Algebra and its Applications, 2014, 441:110-123.
[20] DONOHO D L. Stable recovery of sparse over complete representation in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1):6-18.
[21] ZHU F, ZHANG Q, LUO Y, et al. A novel cognitive ISAR imaging method with random stepped frequency chirp signal[J]. Science China Information Sciences, 2012, 55(8):1910-1924.
[22] 赵曜, 张冰尘, 洪文, 等. 基于RIPless理论的稀疏微波成像波形分析方法[J]. 雷达学报, 2013, 2(3):265-270. ZHAO Y, ZHANG B C, HONG W, et al. RIPless based radar waveform analysis in sparse microwave imaging[J]. Journal of Radars, 2013, 2(3):265-270(in Chinese).
[23] VERGARA-DOMINGUEZ L. Analysis of the digital MTI filter with random PRI[J]. IEE Proceedings-F, Radar Signal Processing, 1993, 140(2):129-137.
[24] AXELSSON S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4):890-904.
/
〈 | 〉 |