电子与控制

基于罚函数序列凸规划的多无人机轨迹规划

  • 王祝 ,
  • 刘莉 ,
  • 龙腾 ,
  • 温永禄
展开
  • 1. 飞行器动力学与控制教育部重点实验室, 北京 100081;
    2. 北京理工大学 宇航学院, 北京 100081
王祝 男,博士研究生。主要研究方向:无人机任务规划、无人机协同决策与控制。Tel:010-68913290 E-mail:wangzhubit@163.com;刘莉 女,博士,教授,博士生导师。主要研究方向:飞行器总体设计、飞行器结构设计、多学科设计优化。Tel:010-68914534 E-mail:liuli@bit.edu.cn

收稿日期: 2015-11-11

  修回日期: 2016-01-22

  网络出版日期: 2016-03-07

基金资助

国家自然科学基金(11372036,51105040);航空科学基金(2015ZA72004)

Trajectory planning for multi-UAVs using penalty sequential convex pro-gramming

  • WANG Zhu ,
  • LIU Li ,
  • LONG Teng ,
  • WEN Yonglu
Expand
  • 1. Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China;
    2. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2015-11-11

  Revised date: 2016-01-22

  Online published: 2016-03-07

Supported by

National Natural Science Foundation of China (11372036; 51105040); Aeronautical Science Foundation of China (2015ZA72004)

摘要

多无人机(UAVs)轨迹规划是具有非线性运动约束和非凸路径约束的最优控制问题。引入序列凸规划思想,将非凸最优控制问题近似为一系列凸优化子问题,并利用成熟的凸优化算法进行求解,以更好地权衡最优性和时效性。首先,建立了多无人机协同轨迹规划的非凸最优控制模型。然后,利用离散化和凸近似方法将其转换为凸优化问题,包括对无人机运动模型的线性化,以及对威胁规避约束和无人机碰撞约束的凸化。同时,提出了一种离散点间的威胁规避方法,保证无人机在离散轨迹点间的飞行安全。在凸优化模型的基础上,给出了基于罚函数序列凸规划求解多无人机轨迹规划的具体框架。最后,通过数值仿真验证了方法的有效性,结果表明该方法在多机轨迹规划结果的最优性和时效性都要优于伪谱法,而且优势随编队数量的增加而增大。

本文引用格式

王祝 , 刘莉 , 龙腾 , 温永禄 . 基于罚函数序列凸规划的多无人机轨迹规划[J]. 航空学报, 2016 , 37(10) : 3149 -3158 . DOI: 10.7527/S1000-6893.2016.0064

Abstract

Trajectory planning of multiple unmanned aerial vehicles (UAVs) is an optimal control problem which subjects to nonlinear motion and nonconvex path constraints. Based on the sequential convex programming approach, such nonconvex optimal control is approximated to be a series of convex optimization subproblems, which can be solved by the state-of-the-art convex optimization algorithm. A good balance between solution quality and computational tractability can then be achieved. Nonconvex optimal control model for multi-UAV trajectory planning is formulated first, and is then approximated to be a convex optimization by discretization and convexification methods. To convexify the nonconvex model, equations of motion of UAVs are linearized, and constraints of threat avoidance and inter-UAVs collision avoidance are convexified. Meanwhile, an inter-sample threat avoidance method is provided to guarantee UAVs' safety at intervals between discrete trajectory points. Based on convex optimization formulation, the detailed procedure of using sequential convex programming based on penalty function to solve multi-UAV trajectory planning is provided. Numerical simulations are conducted to show the effectiveness of the proposed method. The results show that the method can acquire the solution with better optimality and efficiency than the pseudospectral method, especially for larger scale UAV formation.

参考文献

[1] 沈林成, 牛轶峰, 朱华勇, 等. 多无人机自主协同控制理论与方法[M]. 北京:国防工业出版社, 2013:1-9. SHEN L C, NIU Y F, ZHU H Y, et al. Theories and methods of autonomous cooperative control for multiple UAVs[M]. Beijing:National Defense Industry Press, 2013:1-9(in Chinese).
[2] 丁明跃, 郑昌文, 周成平, 等. 无人飞行器航迹规划[M]. 北京:电子工业出版社, 2009:6-15. DING M Y, ZHENG C W, ZHOU C P, et al. Route planning for unmanned aerial vehicles[M]. Beijing:Publishing House of Electronics industry, 2009:6-15(in Chinese).
[3] 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7):1240-1251. ZHANG Y, ZHANG W P, CHEN J, et al. Air-to-ground weapon delivery trajectory planning for UCAVs using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1240-1251(in Chinese).
[4] 白瑞光, 孙鑫, 陈秋双, 等. 基于Gauss伪谱法的多UAV协同航迹规划[J]. 宇航学报, 2014, 35(9):1022-1029. BAI R G, SUN X, CHEN Q S, et al. Multiple UAV cooperative trajectory planning based on Gauss pseudospectral method[J]. Journal of Astronautics, 2014, 35(9):1022-1029(in Chinese).
[5] RICHARDS A, HOW J P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming[C]//Proceedings of the American Control Conference. Reston:AIAA, 2002:1936-1941.
[6] KUWATA Y, HOW J P. Cooperative distributed robust trajectory optimization using receding horizon MILP[J]. IEEE Transactions on System Technology, 2011, 19(2):423-431.
[7] 熊伟, 陈宗基, 周锐. 运用混合遗传算法的多机编队重构优化方法[J]. 航空学报, 2008, 29(S1):209-214. XIONG W, CHEN Z J, ZHOU R. Optimization of multiple flight vehicle formation reconfiguration using hybrid genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(S1):209-214(in Chinese).
[8] DUAN H B, LIU S Q, WU J. Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning[J]. Aerospace Science and Technology, 2009, 13(8):442-449.
[9] BOYD S, VANDENBERGHE L. Convex optimization[M]. New York:Cambridge University Press, 2004:1-15.
[10] BYRD R H, GILBERT J C, NOCEDAL J. A trust region method based on interior point techniques for nonlinear programming[J]. Mathematical Programming, 2000, 89(1):149-185.
[11] LIU X F, LU P. Solving nonconvex optimal control problems by convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):750-765.
[12] LU P, LIU X F. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):375-389.
[13] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2):227-241.
[14] LIU X F, SHEN Z J, LU P. Solving the maximum-crossrange problem via successive second-order cone programming with a line search[J]. Aerospace Science and Technology, 2015, 47:10-20.
[15] MORGAN D, CHUNG S. Model predictive control of swarm of spacecraft using sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1725-1740.
[16] AUGUGLIARO F, SCHOELLIG A P, D'ANDREA R. Generation of collision-free for a quadrocopter fleet:a sequential convex programming approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2012:1917-1922.
[17] CHEN Y F, CUTLER M, HOW J P. Decoupled multiagent path planning via incremental sequential convex programming[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2015:5954-5961.
[18] KABAMBA P T, MEERKOV S M, ZEITZ F H. Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):279-288.
[19] MAIA M H, GALVAO R K H. On the use of mixed-integer linear programming for predictive control with avoidance constraints[J]. International Journal of Robust and Nonlinear Control, 2009, 19(7):822-828.
[20] RICHARDS A, TURNBULL O. Inter-sample avoidance in trajectory optimizers using mixed-integer linear programming[J]. International Journal of Robust and Nonlinear Control, 2015, 25(4):521-526.
[21] CVX Research Inc. CVX:Matlab software for disciplined convex programming, version 2.0[EB/OL]. (2011-06-17)[2015-10-09]. http://cvxr.com/cvx.
[22] GRANT M AND BOYD S. Graph implementations for nonsmooth convex programs[M]//Blondel V, Boyd S, and Kimura H. Recent Advances in Learning and Control. Berlin:Springer, 2008:95-110.
[23] TUTUNCU R H, TOH K C, TODD M J. Solving semidefinite-quadratic-linear programs using SDPT3[J]. Mathematical Programming, Series B, 2003, 95(2):189-217.
[24] PATTERSON M A, RAO A V. GPOPS-Ⅱ:A matlab software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2014, 41(1):1-37.

文章导航

/