基于自适应IMM的高超声速飞行器轨迹预测
收稿日期: 2015-11-19
修回日期: 2016-02-17
网络出版日期: 2016-03-03
基金资助
国家自然科学基金(61573374,61503408);航空科学基金(20150196006,20140196004)
Trajectory prediction of hypersonic vehicle based on adaptive IMM
Received date: 2015-11-19
Revised date: 2016-02-17
Online published: 2016-03-03
Supported by
National Natural Science Foundation of China (61573374, 61503408); Aeronautical Science Foundation of China (20150196006, 20140196004)
翟岱亮 , 雷虎民 , 李炯 , 刘滔 . 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016 , 37(11) : 3466 -3475 . DOI: 10.7527/S1000-6893.2016.0044
To afford the prior information for intercepting the hypersonic vehicle through midcourse guidance based on predicted impact point, a strategy for trajectory prediction of the hypersonic reentry-glide vehicle is proposed. A set of aerodynamic parameters, which are linearly related to the target attitude, is given. The adaptive interactive multiple model (IMM) tracking algorithm is developed based on the dynamic model with aerodynamic parameters being the control input. The effectiveness of the algorithm is verified. Considering the linear characteristic of the parameters and the supposed maneuvering manners of the target, a method for trajectory prediction based on the least-square fitting is developed. Simulations show that in 100 s, the predicted position errors are less than 5 km, and the predicted velocity errors are less than 100 m/s, proving the effectiveness of the strategy in predicting the trajectories of regular maneuvering targets.
Key words: hypersonic vehicle; target tracking; prediction; adaptive; interactive multiple model; fitting
[1] WALKER S H, SHERK J, SHELL D, et al. The DARPA/AF falcon program:The hypersonic technology vehicle#2(HTV-2) flight demonstration phase:AIAA-2008-2539[R]. Reston:AIAA, 2008.
[2] NORRIS J D, LAFFERTY J F, SMITH M S, et al. Design and aerodynamic calibration of the new AEDC hypervelocity wind tunnel No.9 mach 8 nozzle:AIAA-2005-4278[R]. Reston:AIAA, 2005.
[3] ZHANG Y, XIAN B, DIAO C, et al. Robust tracking control design for a flexible air-breathing hypersonic vehicle[J]. Journal of Central South University, 2014, 21(1):130-139.
[4] LI H F, LIN P, XU D J. Control-oriented modeling for air-breathing hypersonic vehicle using parameterized configuration approach[J]. Chinese Journal of Aeronautics, 2011, 24(1):81-89.
[5] BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rocket, 2007, 44(2):374-387.
[6] ADAMOV N P, PUZYREV L N, KHARITONOV A M, et al. Damping characteristics of a reentry vehicle at hypersonic velocities[J]. Journal of Applied Mechanics and Technical Physics, 2014, 55(5):870-876.
[7] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 24(6):1544-1553.
[8] ZHAO J, ZHOU R, JIN X L. Progress in reentry trajectory planning for hypersonic vehicle[J]. Journal of Systems Engineering and Electronics, 2014, 25(4):627-639.
[9] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究[J]. 物理学报, 2012, 61(6):064703-1-064703-6. LU H B, LIU W Q. Cooling efficiency investigation of forward-facing cavity and opposing jet combinatorial thermal protection system[J]. Acta Physica Sinica, 2012, 61(6):064703-1-064703-6(in Chinese).
[10] 张翔宇, 王国宏, 李俊杰, 等. 临近空间高超声速滑跃式轨迹目标跟踪技术[J]. 航空学报, 2015, 36(6):1983-1994. ZHANG X Y, WANG G H, LI J J, et al. Tracking of hypersonic sliding target in near-space[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1983-1994(in Chinese).
[11] LIU Y, YAN X Q, LU G M. A high effective fuzzy synthetic evaluation multi-model estimation[J]. Sensors and Transducers, 2014, 163(1):44-52.
[12] ZHOU W D, ZHANG H B, LIAO C Y. Application of GMCPHD filter algorithm based on VSMM in multiple maneuvering targets tracking[J]. Systems Engineering and Electronics, 2013, 35(1):9-14.
[13] 李海宁, 雷虎民, 翟岱亮, 等. 面向跟踪的吸气式高超声速飞行器动力学建模[J]. 航空学报, 2014, 35(6):1651-1664. LI H N, LEI H M, ZHAI D L, et al. Tracking oriented dynamics modeling of airbreathing hypersonic vehicles[J]. Acta Aeronautica et Asrtonautica Sinica, 2014, 35(6):1651-1664(in Chinese).
[14] 孟庆芳, 张强, 牟文英. 混沌时间序列多步自适应预测方法[J]. 物理学报, 2006, 55(4):1666-1671. MENG Q F, ZHANG Q, MU W Y. A novel multi-step adaptive prediction method for chaotic time series[J]. Acta Physica Sinica, 2006, 55(4):1666-1671(in Chinese).
[15] 杨彬, 贺正洪. 一种GRNN神经网络的高超声速飞行器轨迹预测方法[J]. 计算机应用与软件, 2015, 32(7):239-243. YANG B, HE Z H. Hypersonic vehicle track prediction based on GRNN[J]. Computer Applications and Software, 2015, 32(7):239-243(in Chinese).
[16] 徐一帆, 谭跃进, 贺仁杰, 等. 海洋移动目标多模型运动预测方法[J]. 火力与指挥控制, 2012, 37(3):20-25. XU Y F, TAN Y J, HE R J, et al. Multi-model prediction for maritime moving target motion[J]. Fire Control & Command Control, 2012, 37(3):20-25(in Chinese).
[17] 秦雷, 李君龙, 周荻. 临近空间非弹道式目标HTV-2跟踪滤波与预报问题[J]. 航天控制, 2015, 33(2):56-61. QIN L, LI J L, ZHOU D. The problems of tracking filter and prediction for non-ballistic target HTV-2 in the near space[J]. Aerospace Control, 2015, 33(2):56-61(in Chinese).
[18] 王路, 邢清华, 毛艺帆. 助推-滑翔无动力跳跃飞行器轨迹预测[J]. 空军工程大学学报(自然科学版), 2015, 16(1):24-27. WANG L, XING Q H, MAO Y F. A track forecasting algorithm of boost-glide unpropulsive skipping vehicle[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(1):24-27(in Chinese).
[19] 李广华, 张洪波, 汤国建. 高超声速滑翔飞行器典型弹道特性分析[J]. 宇航学报, 2015, 36(4):397-403. LI G H, ZHANG H B, TANG G J. Typical trajectory characteristics of hypersonic glide vehicle[J]. Journal of Astronautics, 2015, 36(4):397-403(in Chinese).
[20] LI X R, JILKOV V P. Survey of maneuvering target tracking. Part I:Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1333-1364.
[21] LI X R, JILKOV V P. A survey of maneuvering target tracking. Part II:Ballistic target models[C]//Proceeding of SPIE Conference on signal and Data Processing of Small Targets. Bellingham:SPIE, 2001:559-581.
[22] LIANG Y Q, LI X R, HAN C Z, et al. A general systematic method for model-set design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):1505-1520.
[23] 张栋, 唐硕, 李世珍. 吸气式高超声速飞行器粘性力工程计算方法[J]. 固体火箭技术, 2013, 36(3):291-295. ZHANG D, TANG S, LI S Z. Engineering calculation method of viscous force for air-breathing hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2013, 36(3):291-295(in Chinese).
[24] 翟岱亮, 雷虎民, 李海宁, 等. 面向轨迹预测的高超声速飞行器气动性能分析[J/OL]. 固体火箭技术, (2015-11-15)[2015-11-19]. http://www.cnki.net/kcms/detail/61.1176.V.20160901.1626.002.html. ZHAI D L, LEI H M, LI H N, et al. Trajectory prediction oriented aerodynamic performances analysis of hypersonic vehicles[J/OL]. Journal of Solid Rocket Technology, (2015-11-15)[2015-11-19]. http://www.cnki.net/kcms/detail/61.1176.V.20160901.1626.002.html (in Chinese).
[25] ISTRATIE V. Three-dimensional optimal skip entry with terminal maximum velocity[C]//Proceedings of AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 1997:19-26.
[26] 孙福明. 机动目标跟踪状态估计与数据关联技术的研究[D]. 合肥:中国科学技术大学, 2007:41-62. SUN F M. Research on state estimation and data association of motion targets[D]. Hefei:University of Science and Technology of China, 2007:41-62(in Chinese).
[27] 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4):798-808. ZENG K C, XIANG J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):798-808(in Chinese).
[28] CAO F, LI M. Spherical data fitting by multiscale moving least squares[J]. Applied Mathematical Modelling, 2015, 39(12):3448-3458.
[29] 陈跃宁, 徐征, 赵谡玲, 等. 最小二乘拟合计算有机薄膜晶体管迁移率的研究[J]. 物理学报, 2010, 59(11):8113-8117. CHEN Y N, XU Z, ZHAO S L, et al. Research on least-squares fitting calculation of the field-effect mobility[J]. Acta Physica Sinica, 2010, 59(11):8113-8117(in Chinese).
/
〈 | 〉 |