定后掠角密切锥乘波体的生成和设计方法
收稿日期: 2015-12-14
修回日期: 2015-12-30
网络出版日期: 2016-02-26
Generation and design methods of osculating cone waverider with constant angle of sweepback
Received date: 2015-12-14
Revised date: 2015-12-30
Online published: 2016-02-26
对定后掠角密切锥乘波体(OCWRCAS)的生成方法和考虑黏性的设计方法进行了研究。定后掠角乘波体的前缘具有特定的后掠角,能够在上表面产生稳定分离涡从而改善乘波体的气动性能。本文首先在传统密切锥乘波体生成方法的基础上给出了定后掠角密切锥乘波体的生成方法;从前缘后掠的几何特征中提取了后掠角、激波角和前缘曲线程度等设计变量,并研究了设计变量的取值范围;以遍历设计空间的思路对两类定后掠角密切锥乘波体进行了设计分析,研究了升阻比、体积效率随设计变量的变化规律,然后在设计空间内进行了多目标寻优;最后使用计算流体力学方法对定后掠角乘波体的乘波特性和涡升力特性进行了验证。结果表明,由本文生成方法得到的定后掠角密切锥乘波体具有明显的乘波特性并且能够在较高的升阻比时保证一定的体积效率;定后掠角前缘能够在一定的迎角下在上表面产生稳定的分离涡,产生涡升力。
段焰辉 , 范召林 , 吴文华 . 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016 , 37(10) : 3023 -3034 . DOI: 10.7527/S1000-6893.2016.0024
In this paper, the generation and design methods of osculating cone waverider with constant angle of sweepback (OCWRCAS) are studied, and viscous is considered during design. Stable vortex can be generated by the leading edge with constant angle of sweepback, which will improve the aerodynamic ability of the waverider. Firstly, the generation method of OCWRCAS is presented based on the generation method of traditional osculating cone waverider. The design variables of sweepback angle, shock angle and the curve shape of head are extracted by analyzing the geometry character of the OCWRCAS, and the variation trend of lift to drag ratio and volumetric efficiency with these variables is also studied. The multi-objective optimal solutions are founded from two classical types of OCWRCAS by searching the total design space. Finally, the method of computational fluid dynamics is used to verify the character of wave riding and vortex lift. The results show that OCWRCAS with good ability of wave riding and high lift to drag ratio keeps relational volumetric efficiency; vortex lift can be generated by the leading edge with constant angle of sweepback at certain angle of attack.
Key words: waverider; osculating cone; viscous; angle of sweepback; vortex lift
[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(585):521-528.
[2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds using axisymmetric flow field[J]. Archive of Applied Mechanics, 1968, 37(1):56-72.
[3] 耿永兵, 刘宏, 姚文秀, 等. 锥形流乘波体优化设计研究[J]. 航空学报, 2006, 27(1):23-28. GENG Y B, LIU H, YAO W X, et al. Viscous optimized design of waverider derived from cone flow[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1):23-28(in Chinese).
[4] 耿永兵, 刘宏, 雷麦芳, 等. 高升阻比乘波构型优化设计[J]. 力学学报, 2006, 38(4):540-546. GENG Y B, LIU H, LEI M F, et al. Optimized design of waverider with high lift over drag ratio[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):540-546(in Chinese).
[5] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(6):537-545.
[6] 乐贵高, 马大为, 李自勇. 椭圆锥乘波体高超声速流场数值计算[J]. 南京理工大学学报(自然科学版), 2006, 30(3):257-260. LE G H, MA D W, LI Z Y. Computation of hypersonic flowfields for elliptic-cone-derived waverider[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2006, 30(3):257-260(in Chinese).
[7] TAKASHIMA N, LEWIS M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration:AIAA-1994-0380[R]. Reston:AIAA, 1994.
[8] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock wave[C]//First International Waverider Symposium. Maryland:University of Maryland, 1990.
[9] CENTER K, SOBIECZKY H, DOUGHERTY F C. Interactive design and analysis of hypersonic waverider geometries:AIAA-1991-1697[R]. Reston:AIAA, 1991.
[10] KONTOGIANNIS K, SOBESTER A, TAYLOR N J. On the conceptual design of waverider forebody feometries:AIAA-2015-1009[R]. Reston:AIAA, 2015.
[11] SZEMA K, LIU Z, MUNIPALLI R. An efficient GUI design tool for high-speed airbreathing propulsion integration:AIAA-2010-4362[R]. Reston:AIAA, 2010.
[12] 贺旭照, 倪鸿礼. 密切曲面锥乘波体-设计方法与性能分析[J]. 力学学报, 2011, 43(6):1077-1082. HE X Z, NI H L. Osculating curved cone(OCC) waverider:Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082(in Chinese).
[13] 贺旭照, 周正, 毛鹏飞, 等. 密切曲面内锥乘波前体进气道设计和试验研究[J]. 实验流体力学, 2014, 28(3):39-44. HE X Z, ZHOU Z, MAO P F, et al. Design and experimental study of osculating inward turning cone waverider/inlet(OICWI)[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3):39-44(in Chinese).
[14] BOWCUTT K G. Optimization of hypersonic waveriders derived from cone flows-including viscous effects[D]. Maryland:University of Maryland, 1986.
[15] RODI P E. The osculating flowfield method of waverider geometry generation:AIAA-2005-0511[R]. Reston:AIAA, 2005.
[16] RODI P E. Geometrical relationships for osculating cones and osculating flowfield waverider:AIAA-2011-1188[R]. Reston:AIAA, 2011.
[17] RODI P E. Vortex lift waverider configurations:AIAA-2012-1238[R]. Reston:AIAA, 2012.
[18] ANDERSON J D. Modern compressible flow[M]. 2nd ed. New York:McGraw-Hill Publishing Company, 1999:294-307.
[19] CORDA S, ANDERSON J. Viscous optimized hypersonic waveriders designed from axisymmetric flow fields:AIAA-1988-0369[R]. Reston:AIAA, 1988.
[20] DIETER J, GOTTFRIED S, SIEGFRIED W. Basic research and technologies for two-stage-to-orbit vehicles[M]. Weinheim:WILEY-VCH Verlag Gmbh & Co. KGaA, 2005:215-260.
[21] CENTER K, SOBIECZKY H, DOUGHERTY F. Interactive design of hypersonic waverider geometries:AIAA-1991-1697[R].Reston:AIAA, 1991.
/
〈 | 〉 |