多自主翼伞系统建模及其集结控制
收稿日期: 2015-10-20
修回日期: 2015-11-20
网络出版日期: 2016-02-24
基金资助
航空防护救生技术航空科技重点实验室资助的航空科学基金(20152952038);江苏省普通高校研究生科研创新计划(KYLX15_0271);中央高校基本科研业务费专项资金;江苏高校优势学科建设工程资助项目;淮安市科技计划(HAG2015028)
Multiple autonomous parafoils system modeling and rendezvous control
Received date: 2015-10-20
Revised date: 2015-11-20
Online published: 2016-02-24
Supported by
Aeronautical Science Foundation of China funded by Aviation key Laboratory of Science and Technology on Aerospace Life-Support (20152952038); Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0271); The Fundamental Research Funds for the Central Universities; A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions; Huai'an Science and Technology Project (HAG2015028)
当前对翼伞系统的研究主要集中在单个翼伞,但实际空投中一般需要使用多个翼伞,才能完成大量物资、装备的空投补给任务,而多个翼伞同时空投时,将会出现翼伞需要集结、相互间需要避免碰撞等在单翼伞空投时不存在的问题。现有的单翼伞系统已能通过GPS/惯导系统及其他板载传感器实现自主飞行,针对多个自主翼伞的空投任务设计算法,以控制下降翼伞之间的相互运动,实现多翼伞系统的集结和避碰。首先以质点模型为起点,通过引入新的独立变量,并将翼伞运动转换至风固定坐标系,使得单个翼伞质点模型降维为非线性降阶模型,进而得到多自主翼伞模型,在此基础上提出了一种集结控制算法,利用每个翼伞自身的状态信息和相邻翼伞的状态信息,采用势场法使得多翼伞实现集结并避免碰撞,最后一致地降落至地面。仿真结果表明多个自主翼伞实现了集结,减小了翼伞的着陆散布,降低了翼伞之间的碰撞风险,验证了该方法的有效性,可以为进一步研究多自主翼伞协同控制提供理论参考。
陈奇 , 赵敏 , 赵志豪 , 马敏毓 , 黄荣发 . 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016 , 37(10) : 3121 -3130 . DOI: 10.7527/S1000-6893.2016.0047
At present a lot of studies about parafoil system mainly focus on single parafoil, but it usually needs multiple parafoils to drop a large amount of supplies and equipment in actual drop tasks. When multiple parafoils are dropped at the same time, there will be some new problems, such as all parafoils need to rendezvous and every parafoil should avoid collision among each other. The existing single parafoil can realize autonomous flight by GPS/inertial navigation system and other on-board sensors, so in this paper we need to design control algorithm to control the relative motion of the descending parafoils, and to realize the rendezvous and collision avoidance of multiple autonomous parafoils. Firstly, this paper takes the particle model as a starting point, transforms the particle model to a reduced dimension non-linear model by introducing new independent variables, converts the parafoil's movement to the airflow fixed coordinate frame, and then derives the multiple autonomous parafoils model. Moreover, the paper proposes a rendezvous control algorithm based on potential field method, uses each parafoil's own status information and adjacent parafoil's status information, and makes multiple autonomous parafoils rendezvous, avoid collisions and land to the ground consistently. The simulation results verify the validity of the proposed method, and that multiple autonomous parafoils implement rendezvous, reduce the parafoils' landing spread, and decrease the collision risk among each other. The results in this paper provide a theoretical reference for multiple autonomous parafoils coordinated control in further research.
[1] 凯文·凯利. 失控——全人类的最终命运和结局[M]. 北京:新星出版社, 2010:32-36. KEVIN K. Out of control:The new biology of machines, social systems and the economic world[M]. Beijing:New Star Press, 2010:32-36(in Chinese).
[2] 高海涛. 翼伞系统自主归航航迹规划与控制研究[D]. 天津:南开大学, 2014:97-104. GAO H T. Research on control and autonomous homing trajectory planning of parafoil system[D].Tianjin:Nankai University, 2014:97-104(in Chinese).
[3] SEONG-JIN L, CONNER J P, Jr, ARENA A S, Jr. An autonomous recovery system for high altitude payloads by using a parafoil[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2014:2555-2563.
[4] STRAHAN A L. Testing of parafoil autonomous GN&C for X-38[C]//17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston:AIAA, 2003:2115-2129.
[5] WEGEREEF J W, BENOLOL S, UHL E, et al. A high-glide ram-air parachute for 6000 kg payloads, tested with the FASTWing CL test-vehicle[C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2009:2933-2941.
[6] BENNEY R, HENRY M, LAFOND K, et al. DoD new JPADS programs & NATO activities[C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston:AIAA, 2009:2952-2969.
[7] KAMINER I I, YAKIMENKO O, PASCOAL A M. Coordinated payload delivery using high glide parafoil systems[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston:AIAA, 2005:1622-1629.
[8] CALISE A J, PRESTON D. Swarming/flocking and collision avoidance for mass airdrop of autonomous guided parafoils[J]. Journal of Guidance Control and Dynamics, 2008, 31(4):1123-1132.
[9] GURFIL P, FELDMAN S, FELDMAN M. Coordination and communication of cooperative parafoils for humanitarian aid[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4):1747-1761.
[10] ROSICH A, GURFIL P. Coupling in-flight trajectory planning and flocking for multiple autonomous parafoils[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2012, 226(G6):691-720.
[11] 熊菁, 秦子增, 程文科. 翼伞系统弹性连接模型的相对运动分析[J]. 弹道学报, 2006, 18(1):25-29. XIONG J, QIN Z Z, CHENG W K. Analysis of relative motion of parafoil system in flexibly jointed model[J]. Journal of Ballistics, 2006, 18(1):25-29(in Chinese).
[12] 朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响[J]. 航空学报, 2012, 33(7):1189-1200. ZHU X. CAO Y H. Effects of arc-anhedral angle, airfoil and leading edge cut on parafoil aerodynamic performance. Acta Aeronautica et Astronautica Sinica, 2012, 33(7):1189-1200(in Chinese).
[13] 李春, 吕智慧, 黄伟, 等. 精确定点归航翼伞控制系统的研究[J]. 中南大学学报(自然科学版), 2012, 43(4):1331-1335. LI C, LYU Z H, HUANG W, et al. Guidance navigation & control system for precision fix-point homing parafoil[J]. Journal of Central South University (Science and Technology), 2012, 43(4):1331-1335(in Chinese).
[14] 高海涛, 张利民, 孙青林, 等. 基于伪谱法的翼伞系统归航轨迹容错设计[J]. 控制理论与应用, 2013, 30(6):702-708. GAO H T, ZHANG L M, SUN Q L, et al. Fault-tolerance design of homing trajectory for parafoil system based on pseudo-spectral method[J]. Control Theory & Applications, 2013, 30(6):702-708(in Chinese).
[15] 梁海燕, 任志刚, 许超, 等. 翼伞系统最优归航轨迹设计的敏感度分析方法[J]. 控制理论与应用, 2015, 32(8):1003-1011. LIANG H Y, REN Z G, XU C, et al. Optimal homing trajectory design for parafoil systems using sensitivity analysis approach[J]. Control Theory & Applications, 2015, 32(8):1003-1011(in Chinese).
[16] 陈建平, 张红英, 童明波. 翼伞系统纵向飞行性能分析[J]. 中国空间科学技术, 2015(2):25-32. CHEN J P, ZHANU H Y, TONG M B, et al. Lon-gitudinal flight performance analysis of parafoil-payload systems[J]. Chinese Space Science and Technology, 2015(2):25-32(in Chinese).
[17] RADEMACHER B J, LU P, STRAHAN A L, et al. In-flight trajectory planning and guidance for autonomous parafoils[J]. Journal of Guidance Control and Dynamics, 2009, 32(6):1697-1712.
[18] 许耀赆, 田玉平. 线性及非线性一致性问题综述[J]. 控制理论与应用, 2014, 31(7):837-849. XU Y J, TIAN Y P. A survey of linear and non-linear consensus problems in multi-agent systems[J]. Control Theory & Applications, 2014, 31(7):837-849(in Chinese).
[19] LISTMANN K D, MASALAWALA M V, ADAMY J. Consensus for formation control of nonholonomic mobile robots[C]//2009 IEEE International Conference on Robotics and Automation. Pisataway, NJ:IEEE Press, 2009:3886-3891.
[20] DIMAROGONAS D V, KYRIAKOPOULOS K J. On the rendezvous problem for multiple nonholonomic agents[J]. IEEE Transactions on Automatic Control, 2007, 52(5):916-922.
/
〈 | 〉 |