压力分布可控的高超声速进气道/前体一体化乘波设计
收稿日期: 2015-09-09
修回日期: 2015-10-25
网络出版日期: 2016-02-23
基金资助
国家自然科学基金(91441128,51276151);国防基础科研项目(B1420133058)
Integration waverider design of hypersonic inlet and forebody with preassigned pressure distribution
Received date: 2015-09-09
Revised date: 2015-10-25
Online published: 2016-02-23
Supported by
National Natural Science Foundation of China(91441128, 51276151); National Defense Basic Scientific Research(B1420133058)
在二维弯曲激波高超声速进气道基础上,发展了一种压力可控的进气道/前体一体化乘波设计方法。通过事先指定前体/进气道壁面压力分布,结合二维特征线反设计方法,可以逆向设计出流向、横向压力分布规律都可控的进气道/前体外压缩段型面。采用该方法,设计了一种二维进气道/前体一体化方案,并对其进行数值模拟。结果表明:设计状态下,与不带侧板二维进气道相比,此类一体化方案中的进气道设计状态流量系数提高27%,出口压比提高48.5%,总压恢复系数提高10%;与楔导乘波理论设计的一体化方案相比,压力可控的一体化方案具有相似的外形尺寸和乘波特性,但进气道流量系数则较楔导乘波方案提高了5%,进气道出口压比提高6.4%,总压恢复系数提高2.3%。
李怡庆 , 韩伟强 , 尤延铖 , 潘成剑 . 压力分布可控的高超声速进气道/前体一体化乘波设计[J]. 航空学报, 2016 , 37(9) : 2711 -2720 . DOI: 10.7527/S1000-6893.2016.0017
On the basis of two-dimensional curved shock hypersonic inlets, a new integration,waverider design, of hypersonic inlet and forebody with preassigned pressure distribution is presented. A proper streamwise pressure distribution is assigned as the first step according to the shape of a curved shock wave. Afterwards, the external compression part of the inlet and forebody with controllable wall pressure distribution could be designed using the inverse two-dimensional method of characteristics. An integrated configuration is then derived from this concept and numerically studied. The results show that, on the design point, the flow capture ratio of the integrated configuration is enhanced by 27% compared with the pure two-dimensional inlet without sidewalls. The pressure ratio coefficient of inlet outflow rises by 48.5%, and the total pressure recovery coefficient is 10% higher than the no-sidewall inlet. In addition, compared with the Caret integration case, although with the same geometry shape and waverider character,the performance of mass flow rate, pressure ratio and total pressure recovery coefficient are 5%, 6.4%, and 2.3% improved, respectively.
[1] KURANOV A, KORABELNIKOV A. Atmospheric cruise flight challenges for hypersonic vehicles under the ajax concept[J]. Journal of Propulsion & Power, 2012, 24(6):1229-1247.
[2] 尤延铖, 梁德旺, 郭荣伟,等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5):513-525. YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forbody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese).
[3] NONWEILER T R F. Aerodynamic problems of manned space vehicle[J]. Journal of the Royal Aeronautical Society, 1959, 6(3): 34-40.
[4] FRANCOIS F, LAURENT S. The French LEA flight test program-status in 2008:AIAA-2008-2541[R].Reston: AIAA, 2008.
[5] LEWIS M. A hypersonic propulsion airframe integration overview:AIAA-2003-4405[R]. Reston:AIAA, 2003.
[6] FERGUSON F. Adesign concept for the construction of a complete hypersonic vehicle from 2D flowfields:AIAA-2005-3363[R].Reston: AIAA, 2005.
[7] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]// International Hypersonic Waverider Symposium. Washington D.C.: University of Maryland, 1990.
[8] TAKASHIMA N, LEWIS M, LOCKWOOD M, et al.Waverider configuration development for the dual fuel vehicle[C]// International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1996: 1-12.
[9] YOU Y. Dual waverider concept for the integration of hypersonic inward-turning inlet and airframe forebody[C]// International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009: 1-10.
[10] LI Y, YOU Y. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody[C]//19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2014: 1-13.
[11] 贺旭照,秦思, 周正,等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6):1270-1276. HE X Z,QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6):1270-1276(in Chinese).
[12] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8):1417-1426. NAN X J, ZHANG K Y, JIN Z G. Integrated design of waverider forebody and dateral hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1417-1426 (in Chinese).
[13] 范晓樯, 李桦, 易仕和,等. 侧压式进气道与飞行器机体气动一体化设计及实验[J]. 推进技术, 2004, 25(6):499-502. FAN X Q, LI H, YI S H, et al. Experiment of aerodynamic performance for hypersonic vehicle integrated with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6):499-502(in Chinese).
[14] 易军, 肖洪, 商旭升. 两种高超声速一体化构型的气动性能对比分析[J]. 航空工程进展, 2011, 2(3):305-311. YI J, XIAO H, SHANG X S. Aerodynamic performance research of two integrated hypersonic configurations[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3):305-311(in Chinese).
[15] LEWIS M. Aerodynamics for optimal engine-integrated airbreathing launcher configurations: AIAA-2004-3983[R]. Reston:AIAA, 2004.
[16] ZUCROW M J, HOFFMAN J D. Gas dynamics[M]. New York: John Wiley & Sons, Inc., 1976: 463-497.
[17] ANDERSON B H. Design of supersonic inlets by a computer program incorporating the method of characteristics: NASA TN D-4960[R]. Washington, D.C.: NASA, 1969.
[18] 南向军, 张堃元, 金志光,等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523. NAN X J, ZHANG K Y, JIN Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3):518-523 (in Chinese).
[19] 郭善广, 王振国, 赵玉新,等. 高超声速二元进气道前体曲线激波逆向设计[J].航空学报,2014, 35(5): 1246-1256. GUO S G, WANG Z G, ZHAO Y X, et al. Inverse design of the Fore-body curved shock wave of the hypersonic planar inlet[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1246-1256(in Chinese).
[20] 潘瑾, 张堃元, 金志光. 弯曲激波压缩型面的设计及数值分析[J]. 推进技术, 2008, 29(4): 438-442. PAN J, ZHANG K Y, JIN Z G. Design and numerical investigation of curved shock compression surface[J]. Journal of Propulsion Technology, 2008, 29(4): 438-442 (in Chinese).
/
〈 | 〉 |