特征选择的多准则融合差分遗传算法及其应用
收稿日期: 2015-11-19
修回日期: 2016-01-29
网络出版日期: 2016-02-02
基金资助
国家自然科学基金(61179057)
Feature selection method based on differential evolution and genetic algorithm with multi-criteria evaluation and its applications
Received date: 2015-11-19
Revised date: 2016-01-29
Online published: 2016-02-02
Supported by
National Natural Science Foundation of China (61179057)
关晓颖 , 陈果 , 林桐 . 特征选择的多准则融合差分遗传算法及其应用[J]. 航空学报, 2016 , 37(11) : 3455 -3465 . DOI: 10.7527/S1000-6893.2016.0036
In order to make a whole evaluation to the selected feature subset, which improves the reliability of the best subset and the speed of its searching, the paper presents a novel feature method based on differential evolution and genetic algorithm with multi-criteria evaluation. This algorithm is used to evaluate the feature subset by the multi-criteria evaluation. Meanwhile, the improved genetic operators were proposed, which improves the selection operator and the mutation operator. Designing the selection operator with a combination of feature weight values and fitness is beneficial to selecting the individuals which contain the high fitness and important features from the population. In addition, it introduces differential strategy to improve mutation operator, which improves the diversity of evolution population and searching efficiency. Finally, simulation example tests the validity of the proposed algorithm. The validity of the proposed method is also verified with rolling bearing fault diagnosis.
[1] 张学工. 模式识别[M]. 3版. 北京:清华大学出版社, 2010:157. ZHANG X G. Pattern recognition[M]. 3rd ed. Beijing:Tsinghua University Press, 2010:157(in Chinese).
[2] AKRAM A, RAMI N, AHMED A A. Enhancing the diversity of genetic algorithm for improved feature selection[C]//2010 IEEE International Conference on Systems Man and Cybernetics (SMC). Piscataway, NJ:IEEE Press, 2011:1325-1331.
[3] MAJID M, NICOLAS H Y. On the use of the genetic algorithm filter-based feature selection technique for satellite precipitation estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5):963-967.
[4] CANUTO A M P, NASCIMENTO D S C. A genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function[C]//The 2012 International Joint Conference on IEEE Neural Networks (IJCNN). Piscataway, NJ:IEEE Press, 2012:1-8.
[5] 高鹏毅, 陈传波, 张葵, 等. 一种使用多Filter初始化GA种群的混合特征选择模型[J]. 小型微型计算机系统, 2012, 33(11):2379-2384. GAO P Y, CHEN C B, ZHANG K, et al. Hybrid model initializing the genetic population with multiple filters for feature selection[J]. Journal of Chinese Computer Systems, 2012, 33(11):2379-2384(in Chinese).
[6] 任江涛, 孙婧昊, 黄焕宇, 等. 一种基于信息增益及遗传算法的特征选择算法[J]. 计算机科学, 2006, 33(10):193-195. REN J T, SUN J H, HUANG H Y, et al. Feature selection based on information gain and GA[J]. Computer Science, 2006, 33(10):193-195(in Chinese).
[7] 陈果, 邓堰. 遗传算法特征选取中的几种适应度函数构造新方法及其应用[J]. 机械科学与技术, 2011, 30(1):124-128. CHEN G, DENG Y. Several new methods for features extraction based on genetic algorithm and their application[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1):124-128(in Chinese).
[8] 刘元宁, 王刚, 朱晓冬, 等. 基于自适应多种群遗传算法的特征选择[J]. 吉林大学学报(工学版), 2011, 41(6):1690-1693. LIU Y N, WANG G, ZHU X D, et al. Feature selection based on adaptive multi-population genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(6):1690-1693(in Chinese).
[9] KONONENKO I. Estimation attributes:Analysis and extensions of ReliefF[C]//Proceedings of the 1994 European Conference on Machine Learning, 1994:171-182.
[10] 张丽新, 王家廞, 赵雁南, 等. 基于Relief的组合式特征选择[J]. 复旦学报(自然科学版), 2004, 43(5):893-898. ZHANG L X, WANG J X, ZHAO Y N, et al. Combination feature selection based on Relief[J]. Journal of Fudan University (Natural Science), 2004, 43(5):893-898(in Chinese).
[11] 杨启文, 蒋静坪, 曲朝霞, 等. 应用逻辑操作改善遗传算法性能[J]. 控制与决策, 2000, 15(4):510-512. YANG Q W, JIANG J P, QU Z X, et al. Improving genetic algorithms by using logic operation[J]. Control and Decision, 2000, 15(4):510-512(in Chinese).
[12] DENG C, ZHAO B, YANG Y, et al. Binary encoding differential evolution for combinatorial optimization problems[C]//Proceedings of the 2011 Third International Workshop on Education Technology and Computer Science, 2011:11-14.
[13] 刘琛, 林盈, 胡晓敏. 差分演化算法各种更新策略的对比分析[J]. 计算机科学与探索, 2013, 7(11):983-993. LIU C, LIN Y, HU X M. Analyses and comparisons of different update strategies for differential evolution[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11):983-993(in Chinese).
[14] 周明. 遗传算法原理及应用[M]. 北京:国防工业出版社, 1999:59. ZHOU M. Genetic algorithms:Theory and applications[M]. Beijing:National Defense Industry Press, 1999:59(in Chinese).
[15] 陈果, 郝腾飞, 程小勇, 等. 基于机匣测点信号的航空发动机滚动轴承故障诊断灵敏性分析[J]. 航空动力学报, 2014, 29(12):2874-2884. CHEN G, HAO T F, CHENG X Y, et al. Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J]. Journal of Aerospace Power, 2014, 29(12):2874-2884(in Chinese).
[16] 梅宏斌. 滚动轴承振动监测与诊断[M]. 北京:机械工业出版社, 1995. MEI H B. Rolling bearing vibration monitoring and diagnosis[M]. Beijing:China Machine Press, 1995(in Chinese).
/
〈 | 〉 |