流行力学与飞行力学

转捩对压缩拐角激波/边界层干扰分离泡的影响

  • 童福林 ,
  • 李新亮 ,
  • 唐志共 ,
  • 朱兴坤 ,
  • 黄江涛
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国科学院 力学研究所 高温气体动力学重点实验室, 北京 100190
童福林 男,博士研究生,助理研究员。主要研究方向:可压缩湍流直接数值模拟,高超声速气动热和热防护。Tel:0816-2463133 E-mail:wowo2020@sohu.com;唐志共 男,博士,研究员,博士生导师。主要研究方向:高超声速空气动力学。Tel:0816-2463133 E-mail:515363491@qq.com

收稿日期: 2015-10-23

  修回日期: 2015-12-08

  网络出版日期: 2016-01-25

基金资助

国家自然科学基金(91441103,11372330)

Transition effect on separation bubble of shock wave/boundary layer interaction in a compression ramp

  • TONG Fulin ,
  • LI Xinliang ,
  • TANG Zhigong ,
  • ZHU Xingkun ,
  • HUANG Jiangtao
Expand
  • 1. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2015-10-23

  Revised date: 2015-12-08

  Online published: 2016-01-25

Supported by

National Natural Science Foundation of China (91441103,11372330)

摘要

为了研究转捩对压缩拐角内分离泡结构的影响,进行了来流马赫数2.9,24°压缩拐角激波/转捩边界层干扰的直接数值模拟(DNS)。通过在拐角上游平板的不同流向位置处添加周期性吹吸扰动激发流动转捩,使得转捩不同阶段进入拐角入口,从而在拐角内产生激波/转捩边界层的相互干扰。计算得到的平均速度剖面、壁面压力分布以及分离泡大小与风洞试验及以往直接数值模拟结果吻合较好,验证了计算结果的可靠性。研究了转捩过程对角部干扰区内分离泡结构的影响规律,分析比较了不同转捩阶段下角部分离区内湍动能的生成、耗散和分配机制。研究结果表明:转捩初期的拟序涡结构对分离泡尺度及形状影响最大,发卡涡包在角部拐点附近发生展向融合,并在角部区域形成湍流斑,此时分离泡尺度最小,形状呈现中间高两边低的山峰型。随着转捩的发展,分离区内湍动能生成和近壁区的耗散逐步降低,此时输运项起到了主要的平衡作用。

本文引用格式

童福林 , 李新亮 , 唐志共 , 朱兴坤 , 黄江涛 . 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报, 2016 , 37(10) : 2909 -2921 . DOI: 10.7527/S1000-6893.2015.0355

Abstract

Direct numerical simulations (DNS) of shock wave and transitional boundary layer interaction for a 24°compression corner at Mach number 2.9 are performed to study the effect of transition on the separation bubble at the ramp corner. At upstream, the flat-plate transition is triggered by the periodic blow and suction disturbance. The interaction of shock wave and transitional boundary layer is then simulated by setting the length of upstream flat-plate. The extent of separation agrees well with those of the experimental and direct numerical simulation data, which validate the results. Transition effect on the separation bubble in the interaction region is researched and the turbulent kinetic energy budget in the bubble is analyzed. Results indicate that the coherent structures at the early stage of transition have a serious influence on the separation bubble, in which the turbulent spots are formed by the hairpin vortices. Then the scale of separation bubble is the smallest and the shape is spike-type in the spanwise direction. With the evolution of transition, the turbulent production and dissipation term in the separation bubble gradually reduce by four times, while the turbulent transport term contributes to the balance of the turbulent production and dissipation.

参考文献

[1] PLOTKIN K J. Shock wave oscillation driven by turbulent boundary layer fluctuations[J]. AIAA Journal, 1975, 13(8):1036-1040.
[2] POGGIE J, SMITS A J. Experimental evidence for plotkin model of shock unsteadiness in separated flow[J]. Physics of Fluids, 2005, 17(1):018107.
[3] TOUBER E, SANDHAM N D. Low order stochastic modeling of low-frequency motions in reflected shock-wave boundary layer interactions[J]. Journal of Fluid Mechanics, 2011, 671(3):417-465.
[4] DOLLING D S, MURPHY M T. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield[J]. AIAA Journal, 1983, 21(12):628-634.
[5] ADAMS N A. Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1685[J]. Journal of Fluid Mechanics, 2000, 420(3):47-83.
[6] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large eddy simulation of shock wave and turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2006, 565(1):135-169.
[7] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1530.
[8] CHAPMAN D R, KUEHN D M, LARRSON H K. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transitions:NACA Report 1356[R]. Washington, D.C.:NASA, 1958.
[9] MURPHREE Z R, YUCEIL K B, CLEMENS N T, et al. Experimental studies of transitional boundary layer shock wave interactions:AIAA-2007-1139[R]. Reston:AIAA, 2007.
[10] VANSTONE L, SAMPER D E, HILLIER R. Shock-induced separation of transitional hypersonic boundary layers:AIAA-2015-2736[R]. Reston:AIAA, 2015.
[11] GIEPMAN R H M, SCHRIJER F F J, OUDHEUSDEN B W V. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56(6):1-20.
[12] POLIVANOV P A, SIDORENKO A A, MASLOV A A. Transition effect on shock wave/boundary layer interaction at M=1.47:AIAA-2015-1974[R]. Reston:AIAA, 2015.
[13] PRIEBE S, MARTIN M P. Low frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699(5):1-49.
[14] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China:Physics, Mechanics & Astronomy, 2010, 53(9):1651-1658.
[15] GAO H, FU D X, MA Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow[J]. Chinese Physics Letters, 2005, 22(7):1709-1712.
[16] LI X L, FU D X, MA Y W, et al, Acoustic calculation for supersonic turbulent boundary flow[J]. Chinese Physics Letters, 2009, 26(9):094701.
[17] RINGUETTE M J, BOOKEY P, WYCKHAM C, et al. Experimental study of a mach 3 compression ramp interaction at Reθ=2400[J]. AIAA Journal, 2009, 47(2):373-385.
[18] BOOKEY P, WYCKHAM C. SMITS A J, et al. New experimental data of STBLI at DNS/LES accessible Reynolds numbers:AIAA-2005-0309[R]. Reston:AIAA, 2005.
[19] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889.
[20] MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1):270-289.
[21] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545.
[22] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[23] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285(1):69-94.
[24] HEAD M R, BANDYOPADHYAY P R. New aspects of turbulent boundary layer structure[J]. Journal of Fluid Mechanics, 1981, 107:297-338.
[25] LEE C B, WU J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3):0802.
[26] LEE C B. Possible universal transitional scenario in a flat plate boundary layer:measurement and visualization[J]. Physical Review E, 2000, 62(3):297-338.

文章导航

/