短舱对螺旋桨滑流影响的IDDES数值模拟
收稿日期: 2015-09-11
修回日期: 2015-12-18
网络出版日期: 2016-01-25
基金资助
航空科学基金(20155768007);中央高校基本科研业务费专项资金(20720140540,2013121019);福建省高校产学研重大课题(2015H6023)
Numerical simulation of nacelle's effects on propeller slipstream based on IDDES model
Received date: 2015-09-11
Revised date: 2015-12-18
Online published: 2016-01-25
Supported by
Aeronautical Science Foundation of China (20155768007);The Fundamental Research Funds for the Central Universities (20720140540, 2013121019);Key Projects of Science and Technology Cooperation Between Universities and Industry, Fujian Province (2015H6023)
基于非结构重叠网格技术,对短舱与螺旋桨滑流间的相互作用进行了非定常数值模拟研究。为了更好地捕捉螺旋桨尾涡的细节信息,计算采用基于Spalart-Allmaras模型的改进延迟脱体涡模拟(IDDES)方法,并在非定常计算过程中运用网格自适应技术以提高流场特征的空间分辨率。研究结果表明:IDDES方法获得的拉力系数计算值与实验值吻合良好,短舱的存在会增大螺旋桨的拉力系数;短舱对螺旋桨桨毂涡的结构影响较大,但对桨尖涡的螺旋结构影响较小;对单独螺旋桨算例来说,桨尖涡与桨毂涡的失稳发展过程都具有周期性,且在有/无短舱情况下桨尖涡的失稳位置相同,失稳后桨尖涡之间配对融合过程一致,从而说明桨毂涡对桨尖涡的失稳没有影响。
陈荣钱 , 王旭 , 尤延铖 . 短舱对螺旋桨滑流影响的IDDES数值模拟[J]. 航空学报, 2016 , 37(6) : 1851 -1860 . DOI: 10.7527/S1000-6893.2015.0353
Unsteady numerical simulation about the mutual effect between the nacelle and the propeller's slipstream was carried out based on unstructured overset grids algorithm. In order to better capture the detail of the propeller vortex structure, improved delayed detached eddy simulation (IDDES) based on Spalart-Allmaras model was employed, and the adaptive grid technique was used to improve the spatial resolution of the flow field's characteristics during the unsteady process. Research results show that the thrust coefficient calculated by IDDES agrees well with the experimental data, and the existence of the nacelle increases the thrust coefficient of the propeller. The nacelle has a great influence on the structure of the hub vortex but little effect on the structure of the propeller tip vortex. For the propeller without nacelle, both the instability process of the tip vortex and the hub vortex show obvious periodic characteristic. The inception region and the paring effects of the tip vortex of the propeller without nacelle are the same as those of the propeller with nacelle, which indicates that the hub vortex has no effect on the instability of the tip vortex.
[1] ROOSENBOOM E, HEIDER A, SCHRÖDER A. Propeller slipstream development:AIAA-2007-3810[R]. Reston:AIAA, 2007.
[2] FERRARO G, KIPOUROS T, SAVILL A. Propeller-wing interaction prediction for early design:AIAA-2014-0564[R]. Reston:AIAA, 2014.
[3] LUGT H J, FLOW V. Introduction to vortex theory[J]. Journal of Fluid Mechanics, 1999, 384(1):375-378.
[4] OKULOV V L. On the stability of multiple helical vortices[J]. Journal of Fluid Mechanics, 2004, 521(15):319-342.
[5] OKULOV V L, SØRENSEN J N. Stability of helical tip vortices in a rotor far wake[J]. Journal of Fluid Mechanics, 2007, 576:1-25.
[6] MUSCARI R, DI MASCIO A, VERZICCO R. Modeling of vortex dynamics in the wake of a marine propeller[J]. Computers & Fluids, 2013, 73(6):65-79.
[7] DI MASCIO A, MUSCARI R, DUBBIOSO G. On the wake dynamics of a propeller operating in drift[J]. Journal of Fluid Mechanics, 2014, 754(9):263-307.
[8] FELLI M, CAMUSSI R, DI FELICE F. Mechanisms of evolution of the propeller wake in the transition and far fields[J]. Journal of Fluid Mechanics, 2011, 682(3):5-53.
[9] BOUSQUET J M, GARDAREIN P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aerospace science & Technology, 2003, 7(6):465-472.
[10] STVERMER A W. Unsteady CFD simulation of propeller installation effects:AIAA-2006-4969[R]. Restion:AIAA, 2006.
[11] ROOSENBOOM E, HEIDER A, SCHRÖDER A. Investigation of the propeller slipstream with particle image velocimetry[J]. Journal of Aircraft, 2009, 46(2):442-449.
[12] XU H Y, YE Z, SHI A. Numerical study of prepoller slipstream based on unstructured overset grids[J]. Journal of Aircraft, 2012, 49(2):384-389.
[13] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):849-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):849-852(in Chinese).
[14] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[15] 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报, 2015, 30(6):1366-1373. QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6):1366-1373(in Chinese).
[16] 杨帆,杨永. 短舱及离散精度对螺旋桨桨叶载荷分布的影响[J]. 航空计算技术, 2012, 42(2):24-26. YANG F, YANG Y. Influence of nacelle and discrete precision on propeller blade load distribution[J]. Aeronautical Computing Technique, 2012, 42(2):24-26(in Chinese).
[17] 段中喆, 刘沛清, 屈秋林. 某轻载螺旋桨滑流区三维流场特性数值研究[J]. 控制工程, 2012, 19(5):836-840. DUAN Z Z, LIU P Q, QU Q L. Numerical research on 3-D flow field characteristics within the slipstream of a low loaded propeller[J]. Control Engineering of China, 2012, 19(5):836-840(in Chinese).
[18] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[19] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1):181-202.
[20] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Liu C, Liu Z. Advances in DNS/LES. Louisisiama:Greyden Press, Louisiana Tech University, 1997:137-148.
[21] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[22] 应业炬. 船舶快速性[M]. 北京:人民交通出版社, 2007:405-424. YING Y J. Ship speed and resistance[M]. Beijing:China Communications Press, 2007:405-424(in Chinese). the propeller wake in the transition and far fields[J].Journal of fluid mechanics, 2011, 682(3):5-53
[20]应业炬.船舶快速性[M]. 北京:人民交通出版社, 2007.
/
〈 | 〉 |