垂尾抖振主动控制的压电作动器布局优化
收稿日期: 2015-09-18
修回日期: 2015-11-22
网络出版日期: 2016-01-22
基金资助
国家自然科学基金(11502208)
Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control
Received date: 2015-09-18
Revised date: 2015-11-22
Online published: 2016-01-22
Supported by
National Natural Science Foundation of China (11502208)
为了提高压电作动器垂尾抖振主动控制系统的控制性能,提出一种基于输出可控性的压电作动器优化准则。使用压电驱动载荷等效方法建立压电纤维复合材料(MFC)压电作动器力学模型,并建立了带MFC压电作动器垂尾结构模型的动力学方程。在模态可控性和模态价值理论的基础上,提出考虑剩余模态影响的压电作动器优化目标函数。针对垂尾结构的前5阶模态使用遗传算法优化得到压电作动器的布局方案,使用线性二次高斯(LQG)最优控制方法控制垂尾的抖振响应。仿真结果表明,本文优化得到的布局方案比用其他方法能更好地均衡系统的模态可控性,减小剩余模态的影响,获得更好的垂尾抖振响应控制。
梁力 , 杨智春 , 欧阳炎 , 王巍 . 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2016 , 37(10) : 3035 -3043 . DOI: 10.7527/S1000-6893.2016.0005
In order to improve the control performance of the tail buffet control system using piezoelectric actuators, a new optimization criterion is used to optimize the configuration of piezoelectric actuators based on output controllability. Macro-fiber composite (MFC) piezoelectric actuator is modeled by a load simulation method of piezoelectric actuator. Dynamic equations of the vertical tail incorporating MFC actuators are obtained by finite element method. An objective function, using modal controllability and modal cost theory, is suggested with the consideration of residual modes to limit the spillover effect. In order to control the first five modes of the vertical tail, genetic algorithm is used to find the optimal configuration and linear-quadratic Gaussian (LQG) controller is adopted to control the response of the vertical tail. Simulation results show that the optimal configuration of MFC actuators not only improves the control performance but also balances system controllability and reduces the influence of residual modes.
[1] LEE B H K. Vertical tail buffeting of fighter aircraft[J]. Progress in Aerospace Sciences, 2000, 36(3):193-279.
[2] MOSES R W, WIESEMAN C D, BENT A A, et al. Evaluation of new actuators in a buffet loads environment[C]//Proceedings of SPIE. Bellingham,WA:The International Society for Optics and Photonics, SPIE, 2001, 4332:10-21.
[3] CHEN Y, ULKER F D, WICKRAMASINGHE V, et al. Development of robust control law for active buffeting load alleviation of smart fin structures[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7):818-831.
[4] CHEN Y, VIRESH W, ZIMCIK D. Development and verification of real-time controllers for F/A-18 vertical fin buffet load alleviation[C]//Proceedings of SPIE. Bellingham,WA:The International Society for Optical Engineering, SPIE, 2006:617310.1-617310.12.
[5] GUPTA V, SHARMA M, THAKUR N. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure:A technical review[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(12):1227-1243.
[6] ARBEL A. Controllability measures and actuator placement in oscillatory systems[J]. International Journal of Control, 1981, 33(3):565-574.
[7] HAC A, LIU L. Sensor and actuator location in motion control of flexible structures[J]. Journal of Sound and Vibration, 1993, 167(2):239-261.
[8] COLLET M. Shape optimization of piezoelectric sensors dealing with spill-over instability[J]. IEEE Transactions on Control Systems Technology, 2001, 9(4):654-662.
[9] BRUANT I, PROSLIER L. Optimal location of actuators and sensors in active vibration control[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(3):197-206
[10] BRUANT I, GALLIMARD L, NIKOUKAR S. Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm[J]. Journal of Sound and Vibration, 2010, 329(10):1615-1635.
[11] 王军, 杨亚东, 张家应, 等. 面向结构振动控制的压电作动器优化配置研究[J]. 航空学报, 2012, 33(3):494-500. WANG J, YANG Y D, ZHANG J Y, et al. Investigation of piezoelectric actuator optimal configuration for structural vibration control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):494-500(in Chinese).
[12] SADRI A M, WYNNE R J, WRIGHT J R. Robust strategies for active vibration control of strain actuated plate like structures[C]//UKACC International Conference on (Conf. Publ. No. 455) Control '98. Herts, London:IET, 1998:213-218.
[13] SADRI A M, WRIGHT J R, WYNNE R J. Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms[J]. Smart Materials and Structures, 1999, 8(4):490-498.
[14] HAMDAN A M A, NAYFEH A H. Measures of modal controllability and observability for first-and second-order linear systems[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(3):421-428.
[15] JUNKINS J L, KIM Y. Measure of controllability for actuator placement[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5):895-902.
[16] MEHRABIAN A R, YOUSEFI-KOMA A. A novel technique for optimal placement of piezoelectric actuators on smart structures[J]. Journal of the Franklin Institute, 2011, 348(1):12-23.
[17] SOHN J W, CHOI S B, KIM H S. Vibration control of smart hull structure with optimally placed piezoelectric composite actuators[J]. International Journal of Mechanical Sciences, 2011, 53(8):647-659.
[18] 李敏, 陈伟民, 王明春, 等. 压电驱动的载荷比拟方法[J]. 中国科学E辑:科学技术, 2009, 39(11):2576-2584. LI M, CHEN W M, WANG M C, et al. A load simulation method of piezoelectric actuator in FEM for smart structure[J]. Science in China Series E:Technological Science, 2009, 39(11):2576-2584(in Chinese).
[19] POPOV V M. Hyperstability of control systems[M]. Berlin:Springer-Verlag, 1974:52-55.
[20] SKELTON R E, SINGH R, RAMAKRISHNAN J. Component model reduction by component cost analysis[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 1988.
[21] JUNKINS J L, KIM Y. Introduction to dynamics and control of flexible structures[M]. Reston:AIAA, 1993:316-327.
[22] ALDRAIHEM O J, SINGH T, WETHERHOLD R C. Optimal size and location of piezoelectric actuator/sensors:Practical considerations[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):509-515.
[23] PREUMONT A. Vibration control of active structures:An introduction[M]. 3rd ed. Berlin:Springer, 2011:261-264.
/
〈 | 〉 |