惯性粒子分离器清除流道PIV测量与分析
收稿日期: 2015-10-13
修回日期: 2015-11-16
网络出版日期: 2016-01-22
基金资助
国家自然科学基金(51276108)
PIV test and flow analysis of scavenge passage in inertial particle separator
Received date: 2015-10-13
Revised date: 2015-11-16
Online published: 2016-01-22
Supported by
National Natural Science Foundation of China (51276108)
采用粒子成像测速技术(PIV)对惯性粒子分离器弯曲通道模型进行内部流动测试,分析其清除流道流场的结构特点。试验发现,在清除流道进口的不同高度截面上均有回流涡的存在,在不同清除流比(SCR,14%~20%)、不同流量下回流涡结构不同。回流涡的存在是导致小粒径颗粒分离效率低的原因之一。试验结果表明:固体壁面对该回流涡存在很大影响,即越靠近壁面回流涡尺度越大;当SCR值越大时,回流涡占清除流道面积越小;而当进口流量增大时,回流涡尺度变化很小。内部流场以及回流涡尺度的主要影响因素为SCR。本文结果可以为数值模拟以及分离器结构改进提供依据。
关键词: 惯性粒子分离器; 清除流道; 粒子成像测速技术(PIV); 清除流比(SCR); 回流涡
王彤 , 孙亮亮 , 邵昱昌 . 惯性粒子分离器清除流道PIV测量与分析[J]. 航空学报, 2016 , 37(10) : 2961 -2969 . DOI: 10.7527/S1000-6893.2015.0364
The internal flow field of an inertial particle separator model is tested by the technology of particle image velocimetry (PIV), and the structure characteristics of the flow field is analyzed. According to the experimental results, an obvious separated flow can be found near the entrance of the scavenge flow path along different heights, and the behaves differently with different parameter scavenge core ratio (SCR,14% to 20%) and inlet flow rate. The existence of the separated flow is one of the reasons that result the low separation efficiency of the small size particles. Experimental results show that the solid wall has great influence on the scale of the separated flow, and the closer to the wall, the bigger the backflow vortex is. When the SCR increases, the scale of the separated flow gets smaller. With the increase of the inlet flow rate, there is little change of separated flow scale. It is shown that the internal fluid field and the separated flow scale are mainly determined by the SCR parameter. The results can provide reference for the numerical simulation and improvement of the separator structure.
[1] 唐静. 粒子分离器试验器某关键件的设计[D]. 上海:上海交通大学, 2008年. TANG J. Design for critical parts of IPS[D]. Shanghai:Shanghai Jiaotong University, 2008(in Chinese).
[2] FILIPPONE A, BOJDO N. Turboshaft engine air particle separation[J]. Progress in Aerospace Science, 2010, 46(5/6):224-245.
[3] ROBERT J D, BERNARD F S. Integral engine inlet particle separator:Volume Ⅱ design guide[J]. Integral Engine Inlet Particle Separator, 1975, 2, 241.
[4] HAMED A. Particle dynamics of inlet flow fields with swirling vanes:AIAA-1981-0001[R]. Reston:AIAA,1981.
[5] VITTAL B V, TIOTON D L, BENNETT W A. Development of an advanced vaneless inlet particle separator for helipter engines:AIAA-1985-1277[R]. Reston:AIAA, 1985.
[6] TABAKOFF W. Measured particle rebound characteristics on meterials used in gas turbines[C]//AIAA 24th Thermophysics Corfevence June 12-14, 1989, ABwffalo, NewYork. Reston:AIAA, 1989.
[7] ZEDAN M, HARTMAN P, MOSTAFA A, et al. Viscous flow analysis for advanced inlet particle separators:AIAA-1990-2136[R]. Reston:AIAA, 1990.
[8] FAROOQ S, AHMAD Z A. Analysis method for inertial particle separator[J]. Journal of Aircraft, 2007, 44(4):1150-1158.
[9] 侯凌云. 直升机粒子分离器两相流场的数值模拟[D]. 西安:西北工业大学, 1998. HOU L Y. Numerical simulation of the two-dimensional flow field inside a particle separator of a helicopter[D]. Xi'an:Northwestern Polytechnical University, 1998(in Chinese).
[10] 叶静, 胡柏安, 熊焰. 涡轴发动机无叶片粒子分离器流道设计[J]. 现代机械, 2007(2):39-42. YE J, HU B A, XIONG Y. Flow path design of vaneless particle separator for turbo shaft engine[J]. Modern Machinery, 2007(2):39-42(in Chinese).
[11] FLORIA P, 傅耀, 王彤, 等. 发动机入口粒子分离器流场数值模拟及流道改进[J]. 流体机械, 2011, 39(4):10-16. FLORIA P., FU Y, WANG T, et al. Improvement method of an inlet particle separator based on streamlines analysis[J]. Fluid Machinery, 2011, 39(4):10-16(in Chinese).
[12] 高彬彬, 王彤, 傅耀, 等. 惯性粒子分离器流道型线分析与改进[J]. 热能动力工程, 2012, 27(5):566-570. GAO B B, WANG T, FU Y, et al. Inertial particle separator flow type line analysis and improvement[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(5):566-570(in Chinese).
[13] 吴恒刚, 王锁芳. 整体式粒子分离器数值模拟[J]. 航空学报, 2007, 28(15):1073-1079. WU H G, WANG S F. Numerical simulation investigation of inertial particle separator[J]. Acta Aeronautica et Astronautica Sinica, 2007,28(15):1073-1079(in Chinese).
[14] 吴恒刚. 无叶片整体式粒子分离器性能研究[D]. 南京:南京航空航天大学, 2007. WU H G. Numerical simulation of vaneless inertial particle separator[D]. Nanjing:Nanjing University of Aeronautices and Astronautics, 2007(in Chinese).
[15] 童悦, 谭慧俊, 曾平君. 带扫气蜗壳的整体式惯性粒子分离器仿真[J]. 航空动力学报, 2013, 28(5):1125-1133. TONG Y, TAN H J, ZENG P J. Numerical simulation of inertial particle separator with scavange scroll[J]. Journal of Aerospace Power, 2013, 28(5):1125-1133(in Chinese).
[16] BARONE D HAWKINS J, LOTH E. Efficiency of an inertial particle separator:AIAA-2013-1080[R]. Reston:AIAA, 2013.
[17] 李恩邦, 李志平, 李淳, 等. 湍流中示踪粒子跟随性的数值分析[J]. 仪器仪表学报, 2009, 27(1):106-117. LI E B, LI Z P, LI C, et al. Numerical analysis of following behaviors of particle tracers in turbulent[J]. Chinese Journal of Scientific Instrument, 2009, 30(2):225-231(in Chinese).
[18] 康琦, 申功炘. 全场测速技术进展[J]. 力学进展, 1997, 27(1):106-117. KANG Q, SHEN G X, Full speed measuring technology progress[J]. Advances in Mechanics, 1997, 27(1):106-117(in Chinese).
[19] MEINHART C.D., WERELEY S.T., SANTIAGO J. G.. PIV measurements of a microchannel flow[J]. Experiments in Fluids, 1999, 27(5):414-419.
[20] 谢龙, 靳思宇, 王玉璋, 等. 阀体后90°圆形弯管内部流动流场PIV测量及POD分析[J]. 实验流体力学, 2012, 26(3):21-25. XIE L, JIN S Y, WANG Y Z, et al. PIV measurement and POD analysis of inner flow field in 90°bending duct of circular-section with fore-end valve[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):21-25(in Chinese).
/
〈 |
|
〉 |