针对局部非线性问题的混合坐标模态综合法
收稿日期: 2015-09-09
修回日期: 2015-12-28
网络出版日期: 2016-01-19
基金资助
国家自然科学基金(11472132);中央高校基本科研业务费专项资金(NS2014002);江苏高校优势学科建设工程
Component mode synthesis method based on hybrid coordinates for structure with localised nonlinearities
Received date: 2015-09-09
Revised date: 2015-12-28
Online published: 2016-01-19
Supported by
National Natural Science Foundation of China (11472132); the Fundamental Research Funds for Central Universities (NS2014002); Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
非线性动力系统模型的计算效率问题是结构动力学领域中的重要研究课题。提出了一种针对局部非线性问题的混合坐标自由界面子结构模态综合方法。根据局部非线性系统的特点,将结构按照线性部分与非线性部分进行分割。线性部分子结构可以通过模态坐标转换到模态空间。在对线性部分进行减缩的过程中考虑了剩余柔度的影响,并通过构造一组与低阶模态关于系统矩阵加权正交的向量组,解决了子结构含有刚体模态时剩余柔度矩阵无法计算的问题。非线性部分子结构则保留原有的物理坐标。通过界面协调关系,采用自由界面方法得到系统混合坐标综合方程。最后,通过数值算例验证了所提出方法的有效性。
王陶 , 何欢 , 陈国平 . 针对局部非线性问题的混合坐标模态综合法[J]. 航空学报, 2016 , 37(9) : 2757 -2765 . DOI: 10.7527/S1000-6893.2015.0360
The calculation efficiency of nonlinear dynamic system has become increasingly important in the structural dynamics field. A hybrid coordinates component mode synthesis method is proposed in this paper for the structure with localised nonlinearities. According to its feature, generally, the system is divided into the linear component and nonlinear component. The equations of the linear component can be transformed into the modal coordinates by its linear vibration modes. In order to improve the accuracy, the residual flexibility attachment matrix of the system is introduced. And by constructing the weighted-orthogonal vector sets which have weighted-orthogonal relationship with the lower retained modes, the residual flexibility attachment matrix is obtained without using inverse of the stiffness matrix. The equations of the nonlinear component are kept as their original form. The synthesis equations which are expressed by hybrid coordinates are derived in terms of compatibility conditions at the interface. Finally, applications of the proposed methods to the numerical examples demonstrate that the present method is computationally effective.
[1] 董威利, 刘莉, 周思达. 含局部非线性的月球探测器软着陆动力学模型降阶分析[J]. 航空学报, 2014, 35(5): 1319-1328. DONG W L, LIU L, ZHOU S D. Model reduction analysis of soft landing dynamics for lunar lander with local nonlinearities[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1319-1328 (in Chinese).
[2] HURTY W C. Dynamic analysis of structural systems using component modes[J]. AIAA Journal, 1965, 3(4): 678-785.
[3] GOLDMAN R L. Vibration analysis by dynamic partitioning[J]. AIAA Journal, 1969, 7(6): 1152-1154.
[4] MACNEAL R H. A hybrid method of component mode synthesis[J]. Computers and Structures, 1971, 1(4): 581-601.
[5] RUBIN S. Improved component-mode representation for structural dynamic analysis[J]. AIAA Journal, 1975, 13(8): 995-1006.
[6] QIU J B, YING Z G, WILLIAMS F W. Exact modal synthesis techniques using residual constraint modes[J]. International Journal for Numerical Methods in Engineering, 1997, 40(13): 2475-2492.
[7] BENFIELD W A, HRUDE R F. Vibration analysis of structures by component mode substitution[J]. AIAA Journal, 1971, 9(7): 1255-1261.
[8] HE H, WANG T, CHEN G P, et al. A real decoupled method and free interface component mode synthesis methods for generally damped systems[J]. Journal of Sound and Vibration, 2014, 333(2): 584-603.
[9] PAPADIMITRIOU C, PAPADIOTI D C. Component mode synthesis techniques for finite element model updating[J]. Computers and Structures, 2013, 126(1): 15-28.
[10] CHENTOUF S A, BOUHADDI N, LAITEM C S. Robustness analysis by a probabilistic approach for propagation of uncertainties in a component mode synthesis context[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2426-2443.
[11] MENCIK J M. Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45-46): 3051-3065.
[12] CLOUGH R W, WILSON E L. Dynamic analysis of large structural systems with local nonlinearity[J]. Computer Methods in Applied Mechanics and Engineering. 1979, 17(18): 107-129.
[13] 郝淑英, 陈予恕, 张琪昌, 等. 连结子结构在非线性动力学分析中的应用[J]. 天津大学学报, 2001, 34(3): 295-299. HAO S Y, CHEN Y S, ZHANG Q C, et al. Application of link substructure to nonlinear dynamic system analysis[J]. Journal of Tianjin University, 2001, 34(3): 295-299 (in Chinese).
[14] 华军, 许庆余, 张家忠. 挤压油膜阻尼器-滑动轴承-转子系统非线性动力特性的数值分析及实验研究[J]. 航空学报, 2001, 22(1): 42-45. HUA J, XU Q Y, ZHANG J Z. Numerical and experimental study on nonlinear dynamic behavior of the fluid film bearing-rotor system with squeeze film damper[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 42-45 (in Chinese).
[15] IWATSUBO T, SHIMBO K, KAWAMURA S. Nonlinear vibration analysis of a rotor system using component mode synthesis method[J]. Archive of Applied Mechanics, 2003, 72(11-12): 843-855.
[16] 吕延军, 虞烈, 刘恒. 非线性转子-轴承系统的动力学特性及稳定性[J]. 机械强度, 2004, 26(3): 242-246. LV Y J, YU L, LIU H. Dynamic characterstics and stability of nonlinear rotor-bearing system[J]. Journal of Mechanical Strength, 2004, 26(3): 242-246 (in Chinese).
[17] VERROS G, NATSIAVAS S. Ride dynamics of nonlinear vehicle models using component mode synthesis[J]. Journal of Vibration and Acoustics, 2002, 124(3): 427-434.
[18] KAWAMURA S, NAITO T, ZAHID H M, et al. Analysis of nonlinear steady state vibration of a multi-degree-of-freedom system using component mode synthesis method[J]. Applied Acoustics, 2008, 69(7): 624-633.
[19] SAITO A, CASTANIER M, PIERRE C, et al. Efficient nonlinear vibration analysis of the forced response of rotating cracked blades[J]. Journal of Computational & Nonlinear Dynamics, 2006, 4(1): 53-63.
[20] PRAVEEN KRISHNA I R, PADMANABHAN C. Improved reduced order solution techniques for nonlinear systems with localized nonlinearities[J]. Nonlinear Dynamics, 2011, 63(4): 561-586.
/
〈 | 〉 |