基于极值理论的平尾结冰飞行风险评估
收稿日期: 2015-12-04
修回日期: 2015-12-30
网络出版日期: 2016-01-13
基金资助
国家自然科学基金(61374145,61503406);国家“973”计划(2015CB755802)
Flight risk evaluation of tailplane icing based on extreme value theory
Received date: 2015-12-04
Revised date: 2015-12-30
Online published: 2016-01-13
Supported by
National Natural Science Foundation of China (61374145, 61503406); National Basic Research Program of China (2015CB755802)
提出了结合极值理论与Copula模型来量化评估平尾结冰条件下飞行风险概率的方法。通过建立人-机-环复杂系统模型,对平尾在进近与着陆过程中的结冰情形进行仿真,采用蒙特卡罗法提取平尾结冰极值参数,验证了所提取极值参数符合一维广义极值(GEV)分布,根据飞行风险的定义和相关安全性准则,建立了平尾结冰飞行风险发生的判定条件,计算得出一维极值飞行风险概率;在此基础上选取Copula模型来描述二维极值参数的相关性,对多种Copula模型的未知参数进行辨识,通过拟合优度检验对精度进行验证,得出Joe Copula模型对二维极值分布的描述最为准确,运用Joe Copula模型计算出二维极值飞行风险概率,有效解决了一维极值具有的局限性。所提方法对飞行安全评估等理论有一定参考价值,能为平尾结冰飞行事故的预防提供分析和检验依据。
王健名 , 徐浩军 , 薛源 , 王小龙 , 李哲 . 基于极值理论的平尾结冰飞行风险评估[J]. 航空学报, 2016 , 37(10) : 3011 -3022 . DOI: 10.7527/S1000-6893.2016.0011
A new method combining extreme value theory and Copula models is proposed to quantitatively evaluate the flight risk of tailplane icing. By establishing the complex pilot-aircraft-environment model, the situation of tailplane icing during approaching and landing is simulated. The flight extreme parameters which are proved to fit the generalized extreme value (GEV) distribution are extracted through Monte Carlo method. According to the definition of flight risk and relevant safety criterions, the flight risk determination condition is built to compute the flight risk probability of one-dimensional extreme. Then copula models are chose to describe the correlation of two-dimensional extreme parameters, and unknown parameters in different Copula models are identified. The results of goodness-of-fit test show that Joe Copula model has the highest accuracy when describing the distribution of two-dimensional extreme parameters. Thus, the flight risk probability of two-dimensional extreme parameters is calculated using Joe Copula, which solves the limitation of one-dimensional extreme parameter. The approach has certain reference values for the theories of flight safety assessment, and provides analysis and test standard for preventing flight accident in the circumstance of tailplane icing.
[1] RANAUDO R J, BATTERSON J G, REEHORST A L, et al. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft:AIAA-1989-0754[R]. Reston:AIAA,1989.
[2] RATVASKY T P, VAN ZANTE J F. NASA/FAA tailplane icing program:flight test report:NASA/TP-2000-209908[R]. Washington, D.C.:NASA, 2000.
[3] BRAGG M B. Aircraft aerodynamic effects due to large droplet ice accretions:AIAA-1996-0932[R]. Reston:AIAA, 1996.
[4] GINGRAS D R, DICKES E G, RATVASKY T P. Modeling of in-flight icing effects for pilot training:AIAA-2002-4605[R]. Reston:AIAA, 2002.
[5] HAMMOND D, QUERO M, IVEY P, et al. Analysis and experimental aspects of the impact of supercooled water droplets into thin water films:AIAA-2005-0077[R]. Reston:AIAA, 2005.
[6] BRAGG M B, HUTCHISON T, MERRET J, et al. Effect of ice accretion on aircraft flight dynamics:AIAA-2000-0360[R]. Reston:AIAA, 2000.
[7] AMANDA L, JOHN V. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673.
[8] ANSELL P J, KERHO M F. Envelope protection for contaminant-induced adverse aerodynamics on a wing using flap hinge moment measurements:AIAA-2013-2654[R]. Reston:AIAA, 2013.
[9] THOMAS P R. Demonstration of an ice contamination effects flight training device:AIAA-2006-0677[R]. Reston:AIAA, 2006.
[10] THOMAS P R, BILLY P B, LEE S. Current methods modeling and simulating icing effects on aircraft performance, stability, control[J]. Journal of Aircraft, 2010, 47(1):201-211.
[11] 徐忠达, 苏媛, 曹义华.平尾结冰对飞机纵向气动参数的影响[J].航空学报, 2013,34(7):1563-1570. XU Z D, SU Y, CAO Y H. Effects of tailplane icing on aircraft longitudinal aerodynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1563-1570(in Chinese).
[12] 史刚, 李云. Y-8飞机平尾积冰导致的飞行事故分析[J]. 飞行力学, 2011, 29(5):84-86. SHI G, LI Y. Study of flight accidents in a row caused by horizontal tail icing[J]. Flight Dynamics, 2011, 29(5):84-86(in Chinese).
[13] 潘环, 艾剑良. 飞机结冰冰形预测的建模与仿真[J]. 系统仿真学报, 2014, 26(1):221-224. PAN H, AI J L. Modeling and simulation of aircraft ice shape prediction[J]. Journal of System Simulation, 2014, 26(1):221-224(in Chinese).
[14] 周莉, 徐浩军, 杨哲. 飞机在结冰条件下的最优边界保护方法[J]. 上海交通大学学报, 2013, 47(8):1217-1221. ZHOU L, XU H J, YANG Z. Optimal boundary protection method for aircraft under icing conditions[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1217-1221(in Chinese).
[15] 陈斌, 王立文. 飞机除冰液地面除冰过程模型仿真与实验[J]. 系统仿真学报, 2012, 24(3):556-560. CHEN B, WANG L W. Model simulation and experiment of aircraft deicing process using deicing fluids on ground[J]. Journal of System Simulation, 2012, 24(3):556-560(in Chinese).
[16] GJB900-90. General program for system safety[S]. 1990.
[17] ASE. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment:SAE ARP 4761[S]. New York:SAE, 1996.
[18] DOD. Airworthiness certification criteria:MIL-HDBK-516B[S]. Washington, D.C.:DOD, 2005.
[19] DOD. Standard practice for system safety:MIL-STD-882D[S]. Washington, D.C.:DOD, 2000.
[20] STUART C. An introduction to statistical modeling of extreme value[M]. London:Springer, 2007.
[21] LAMPTON A, VALASEK J. Prediction of icing effects on the lateral/directional stability and control of light airplanes[J]. Aerospace Science and Technology, 2012:305-311.
[22] STELIOS D B, DIMITRIS A G. Estimation of value-at-risk by extreme value and conventional methods:A comparative evaluation of their predictive performance[J]. Journal of International Financial Markets, Institutions & Money, 2006, 8:209-228.
[23] JOE H. Asymptotic efficiency of the two-stage estimation method for Copula-based models[J]. Journal of Multivariate Analysis, 2005, 94(2):401-419.
[24] FREY R,MENEIL A J. Copula and credit models[J]. The Risk Metrics, 2001.
[25] NELSEN R B. An introduction to copulas[M]. New York:Springer, 1999.
/
〈 | 〉 |