流动控制

超临界机翼介质阻挡放电等离子体流动控制

  • 张鑫 ,
  • 黄勇 ,
  • 王勋年 ,
  • 王万波 ,
  • 唐坤 ,
  • 李华星
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心, 绵阳 621000

收稿日期: 2015-10-22

  修回日期: 2016-01-10

  网络出版日期: 2016-01-12

基金资助

武器探索研究重大项目(7130711)

Flow control on a supercritical wing using dielectric barrier discharge plasma actuator

  • ZHANG Xin ,
  • HUANG Yong ,
  • WANG Xunnian ,
  • WANG Wanbo ,
  • TANG Kun ,
  • LI Huaxing
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-10-22

  Revised date: 2016-01-10

  Online published: 2016-01-12

Supported by

Exploration Foundation of Weapon System of China (7130711)

摘要

为了进一步提高等离子体激励器可控雷诺数,采用测力以及粒子图像测速(PIV)等研究方法,从二维机翼到三维半模,从低雷诺数到高雷诺数,开展了对称布局式介质阻挡放电(DBD)等离子体激励器控制超临界机翼气动特性的试验研究,分析了控制机理,实现了等离子体"虚拟舵面"的功能。结果表明:在雷诺数为2×106的情况下,对称布局式等离子体气动激励能较好地抑制超临界机翼绕流流场分离,使失速迎角推迟2°,最大升力系数提高8.98%。

本文引用格式

张鑫 , 黄勇 , 王勋年 , 王万波 , 唐坤 , 李华星 . 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016 , 37(6) : 1733 -1742 . DOI: 10.7527/S1000-6893.2016.0015

Abstract

In order to improve the plasma actuator authority at higher Reynolds number, a test investigation is conducted to evaluate the effect of symmetrical dielectric barrier discharge (DBD) plasma actuators on a two-dimensional supercritical wing and three-dimensional half model using force measurement and particle image velocimetry (PIV) at different Reynolds number. The controlling mechanism is analyzed and the function of "Virtual Section Shape" by plasma actuator is achieved. The results show that the flow separation around wing can be obviously suppressed by the symmetrical plasma actuator at Reynolds number 2×106. It turned out that the stall angle of attack is delayed by approximately 2° and the maximum lift coefficient is increased by approximately 8.98%.

参考文献

[1] CORKE T C, POST M L, ORLOV D M. SDBD plasma enhanced aerodynamics:Concepts, optimization and application[J]. Progress in Aerospace Sciences, 2007, 43(7-8):193-217.
[2] PATEL M P, NG T T, VASUDEVAN S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[J]. AIAA Journal, 2007, 44(4):1264-1274.
[3] MABE J H, CALKINS F T, WESLEY B. Single dielectric barrier discharge plasma actuators for improved airfoil performance[J]. Journal of Aircraft, 2009, 46(3):847-855.
[4] LITTLE J, NISHIHARA M, ADAMOVICH I. High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator[J]. Experiments in Fluids, 2010, 48(3):521-537.
[5] ANDERSON K V, KNIGHT D D. Plasma jet for flight control[J]. AIAA Journal, 2012, 50(9):1855-1872.
[6] CORKE T C, POST M L, ORLOV D M. Single dielectric barrier discharge plasma enhanced aerodynamics:Physics, modeling and applications[J]. Experiments in Fluids, 2009, 46(1):1-26.
[7] THOMAS F, CORKE T C, IQBAL M, et al. Optimization of SDBD plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47(9):2169-2178.
[8] SIDORENKO A A, BUDOVSKIY A D, MASLOV A A, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Experiments in Fluids, 2013, 54(7):1585-1597.
[9] ROUPASSOV D, NIKIPELOV A, NUDNOVA M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185.
[10] JUKES T N, CHOI K S. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma[J]. Physics of Fluids, 2009, 21(8):301-327.
[11] WHALLEY R, CHOI K S. Starting, traveling and colliding vortices:Dielectric-barrier discharge plasma actuator in quiescent air[J]. Physics of Fluids, 2010, 22(9):509-538.
[12] WHALLEY R D, CHOI K S. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma[J]. Journal of Fluid Mechanics, 2012, 703(1):192-203.
[13] BENARD N, MOREAU E, GRIFFIN J. Slope seeking for autonomous lift improvement by plasma surface discharge[J]. Experiments in Fluids, 2010, 48(5):791-808.
[14] BENARD N, BONNET J P, TOUCHARD G, et al. Flow control by dielectric barrier discharge actuators:Jet mixing enhancement[J]. AIAA Journal, 2008, 46(9):2293-2305.
[15] GREENBLATT D, GOKSEL B, SCHULE C Y. Dielectric barrier discharge flow control at very low flight Reynolds numbers[J]. AIAA Journal, 2008, 46(6):1528-1541.
[16] GRUNDMANN S, TROPEA C. Experimental transition delay using glow-discharge plasma actuators[J]. Experiments in Fluids, 2007, 42(4):653-657.
[17] KOTSONIS M, GHAEMI S, VELDHUIS L, et al. Measurement of the body force field of plasma actuators[J]. Journal of Physics D:Applied Physics, 2011, 44(4):85-98.
[18] 李应红, 梁华, 马清源, 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验研究[J]. 航空学报, 2008, 29(6):1429-1435. LI Y H, LIANG H, MA Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese).
[19] WU Y, LI Y H, JIA M. Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge[J]. Chinese Journal of Aeronautics, 2010, 23(1):39-45.
[20] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[21] 朱益飞, 吴云, 崔巍, 等. 大气压空气纳秒脉冲等离子体气动激励特性数值模拟与实验验证[J]. 航空学报, 2013, 34(9):2081-2091. ZHU Y F, WU Y, CUI W, et al. Numerical simulation and experimental validation of pulsed nanosecond plasma aerodynamic actuation in air under atmospheric pressure[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2081-2091(in Chinese).
[22] 王林, 罗振兵, 夏智勋. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12):1-10. WANG L, LUO Z B, XIA Z X. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12):1-10(in Chinese).
[23] 王林, 夏智勋, 罗振兵, 等. 两电极等离子体合成射流激励器工作特性研究[J]. 物理学报, 2014, 63(19):194702-1-12. WANG L, XIA Z X, LUO Z B, et al. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator[J]. Acta Physica Sinica, 2014, 63(19):194702-1-12(in Chinese).
[24] 张宇, 罗振兵, 王澈. 两电极等离子体高能合成射流流场及其冲量实验研究[J]. 实验流体力学, 2014, 28(6):39-44. ZHANG Y, LUO Z B, WANG C. Experimental study on flow field and impulse of a two-electrode plasma high sytheic jet[J]. Journal of Experiments in Fluids Mechanics, 2014, 28(6):39-44(in Chinese).
[25] 车学科, 聂万胜, 侯志勇, 等. 地面实验模拟高空等离子体流动控制效果[J]. 航空学报, 2015, 36(2):441-448. CHE X K, NIE W S, HOU Z Y, et al. High altitude plasma flow control simulation through ground experiment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):441-448(in Chinese).
[26] CHE X K, SHAO T, NIE W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D:Applied Physics, 2012, 45(14):1-14.
[27] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62(4):52-78.
[28] ZHANG P F, LIU A B, WANG J J. Aerodynamic modification of a NACA 0012 aerofoil by trailing-edge plasma Gurney flap[J]. AIAA Journal, 2009, 47(10):2467-2474.
[29] FENG L H, JUKES T N, CHOI K S. Flow control over a NACA 0012 aerofoil using dielectric barrier discharge plasma actuator with a Gurney flap[J]. Experiments in Fluids, 2012, 52(6):1533-1546.
[30] 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9):1583-1589. SHI Z W, FAN B G. Experimental study on flow control characteristics of different plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1583-1589(in Chinese).
[31] 杜海, 史志伟, 耿玺. 等离子体激励器对微型飞行器横航向气动力矩控制的实验研究[J]. 航空学报, 2012, 33(10):1781-1790. DU H, SHI Z W, GENG X. Experimental study of directional-lateral aerodynamic moment control of micro air vehicle by plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1781-1790(in Chinese).
[32] 孟宣市, 郭志鑫, 罗时钧, 等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报, 2010, 31(3):500-505. MENG X S, GUO Z X, LUO S J, et al. Control of asymmetric vortices over a slender conical forebody using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):500-505(in Chinese).
[33] 孟宣市, 李华星, 唐花蕊, 等. 不同迎角下前体涡流动的等离子体控制特性[J]. 西北工业大学学报, 2012, 30(3):402-406. MENG X S, LI H X, TANG H R, et al. Exploring flow features of conical forebody versus angle of attack under plasma actuation[J]. Journal of Northwestern Polytechnical University, 2012, 30(3):402-406(in Chinese).
[34] LIU Z F, WANG L Z, FU S. Study of flow induced by sine wave and saw tooth plasma actuators[J]. Science China Physics, Mechanics & Astronomy, 2011, 54(11):2033-2039.
[35] 潘波, 沈锦明, 林麒. 等离子体激励器流场测量及诱导推力实验[J]. 推进技术, 2011, 32(1):146-150. PAN B, SHEN J M, LIN Q. Experiment on flow field and thrust induced by plasma actuator[J]. Journal of Propulsion Technology, 2011, 32(1):146-150(in Chinese).
[36] NIE C Q, LI G, ZHU J Q. Investigation of dielectric barrier discharge plasma flow control[J]. Science China Physics, Mechanics & Astronomy, 2008, 51(7):1064-1072.
[37] ZHANG X, HUANG Y, WANG W B, et al. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(6):1160-1168.
[38] 张鑫, 黄勇, 沈志洪, 等. 高风速下介质阻挡放电等离子体气动激励抑制翼身组合体失速分离的实验研究[J]. 实验流体力学, 2012, 26(3):17-20. ZHANG X, HUANG Y, SHEN Z H, et al. Stall separation flow control using dielectric barrier discharge plasma over a wing-body combination at high wind speed[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3):17-20(in Chinese).
[39] ASADA K, FUJII K. Burst frequency effect of DBD plasma actuator on the control of separated flow over an airfoil:AIAA-2012-3054[R]. Reston:AIAA, 2012.

文章导航

/