NES对二维机翼气弹不稳定性的抑制作用
收稿日期: 2015-10-29
修回日期: 2016-01-08
网络出版日期: 2016-01-11
基金资助
国家“973”计划(2012CB026002);国家科技支撑计划(2013BAF01B02)
Suppression of aeroelastic instability of 2-D wing by nonlinear energy sinks
Received date: 2015-10-29
Revised date: 2016-01-08
Online published: 2016-01-11
Supported by
National Basic Research Program of China (2012CB026002); National Key Technology Research and Development Program of China (2013BAF01B02)
采用数值方法研究了加装非线性能量汇(NES)的二维机翼在不同速度来流下的振动响应机制,着重探索了NES对系统振动的抑制以及系统内的靶向能量传递(TET)特性。首先,建立了加装在机翼前缘及后缘的NES与二维机翼的耦合系统模型,该模型考虑了机翼的沉浮与扭转振动。然后,从非线性振动响应和能量传递等几个方面研究了前NES与后NES对机翼振动的抑制效果和机制。进一步,应用频谱分析发现了此非线性耦合系统振动中存在共振捕获(resonance captures)特性,同时研究了前、后NES与机翼振动模式(沉浮与俯仰)间的靶向能量传递现象与机翼不同的极限环运动之间的对应关系。结果表明,采用前、后都加装NES的方法能够拓宽NES与机翼振动模式间发生靶向能量传递与共振捕获的频率范围,从而提升NES对机翼振动进行有效抑制的临界来流速度。
张文帆 , 张家忠 , 曹盛力 . NES对二维机翼气弹不稳定性的抑制作用[J]. 航空学报, 2016 , 37(11) : 3249 -3262 . DOI: 10.7527/S1000-6893.2016.0013
The flow-induced vibration of two-dimensional wing coupled with two nonlinear energy sinks (NESs) under freestream flow is studied by numerical methods, and the relationship between the vibration suppression and targeted energy transfer (TET) of the system is analyzed. The model of the coupling system, which takes into account both heave and pitch motions, is developed, and the NESs are located at the leading edge and the trailing edge (NES1 and NES2) separately. The mechanisms of vibration suppression by NESs are also investigated from the viewpoint of energy transfer, etc., and the resonance captures in the nonlinear coupling system are studied using spectrum analysis. The ensuing TET through the modes of wing (Heave and Pitch) and the NESs are discussed, and the relationship between TET and different limit cycle oscillations of wing are investigated as well. The results show that the NESs can broaden the frequency domain in which the TET and resonance captures between modes can be more available in the coupling system. Therefore, the TET is more efficient between the wing and NESs, thus leading to the increase of the critical velocity of freestream under which the vibration of wing can be suppressed by NESs effectively.
[1] KERSCHEN G, LEE Y S, VAKAKIS A F. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics, 2006, 66(2):648-679.
[2] NAYFEH A H, MOOK D. Nonlinear oscillations[M]. NewYork:Wiley Interscience, 1985.
[3] NEISHTADT A I. Passage through a separatrix in a resonance problem with a slowly-varying parameter[J]. Prikladnaya Matamatika I Mekhanika, 1975, 39(4):621-632.
[4] QUINN D, RAND R, BRIDGE J. The dynamics of resonant capture[J]. Nonlinear Dynamics, 1995, 8(1):1-20.
[5] QUINN D D. Resonance capture in a three degree-of-freedom mechanical system[J]. Nonlinear Dynamics, 1997, 14(4):309-333.
[6] QUINN D D. Transition to escape in a system of coupled oscillators[J]. International Journal of Non-Linear Mechanics, 1997, 32(6):1193-1206.
[7] FATIMAH S, VERHULST F. Suppressing flow-induced vibrations by parametric excitation[J]. Nonlinear Dynamics, 2003, 31(3):275-298.
[8] GENDELMAN O V, GORLOV D V, MANEVITCH L I, et al. Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses[J]. Journal of Sound & Vibration, 2005, 286(1-2):1-19.
[9] LEE Y S, VAKAKIS A F, BERGMAN L A, et al. Triggering mechanisms of limit cycle oscillations in a two degree-of-freedom wing flutter model[J]. Journal of Fluids & Structures, 2005, 21(5):1863-1872.
[10] LEE Y S, VAKAKIS A F, BERGMAN L A, et al. Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks[J]. Structural Control & Health Monitoring, 2005, 13(13):41-75.
[11] LEE Y S, KERSCHEN G, VAKAKIS A F, et al. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment[J]. Physica D:Nonlinear Phenomena, 2005, 204(1):41-69.
[12] LEONID M, AGNESSA K. Nonlinear energy transfer in classical and quantum systems[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2012, 87(2):304-320.
[13] HUBBARD S A, MCFARLAND D M, BERGMAN L A, et al. Targeted energy transfer between a swept wing and winglet-housed nonlinear energy sink[J]. AIAA Journal, 2014, 52(12):2633-2651.
[14] HUBBARD S A, FONTENOT R L, MCFARLAND D M, et al. Transonic aeroelastic instability suppression for a swept wing by targeted energy transfer[J]. Journal of Aircraft, 2014, 51(5):1467-1482.
[15] LEE Y, VAKAKIS A, BERGMAN L, et al. Suppression aeroelastic instability using broadband passive targeted energy transfers, Part 1:Theory[J]. AIAA Journal, 2012, 45(3):693-711.
[16] 张也弛, 孔宪仁, 张红亮. 非线性耦合振子间的靶能量传递研究:保守系统中的完全能量传递[J]. 振动与冲击, 2012, 31(1):150-155. ZHANG Y C, KONG X R, ZHANG H L. Targeted energy transfer among coupled nonlinear oscillators:Complete energy exchange in a conservative system[J]. Journal of Vibration and Shock, 2012, 31(1):150-155(in Chinese).
[17] 张也弛, 孔宪仁, 杨正贤, 等. 非线性吸振器的靶能量传递及参数设计[J]. 振动工程学报, 2011, 24(2):111-117. ZHANG Y C, KONG X R, YANG Z X, et al. Targeted energy transfer and parameter design of a nonlinear vibration absorber[J]. Journal of Vibration Engineering, 2011, 24(2):111-117(in Chinese).
[18] DOWELL E H. A modern course in aeroelasticity[J]. Journal of Mechanical Design, 1995, 103(2):465-466.
[19] KUZNETSOV, YURI A. Elements of applied bifurcation theory[C]//Applied Mathematical Sciences 112. New York:Spring-Verlag, 1995:715-730.
[20] 张家忠. 非线性动力系统的运动稳定性、分岔理论及其应用[M]. 西安:西安交通大学出版社, 2010. ZHANG J Z. The motion stability, bifurcation theory and application of nonlinear dynamic system[M]. Xi'an:Xi'an Jiaotong University Press, 2010(in Chinese).
/
〈 | 〉 |