流体力学与飞行力学

微重力动态水气分离器性能仿真与理论分析

  • 张文伟 ,
  • 柯鹏
展开
  • 1. 北京航空航天大学 航空科学与工程学院, 北京 100083;
    2. 北京航空航天大学 交通科学与工程学院, 北京 100083
张文伟 男, 博士研究生。主要研究方向: 气液两相流。 Tel: 010-82316627 E-mail: zhangwenwei.good@163.com

收稿日期: 2015-09-19

  修回日期: 2015-12-03

  网络出版日期: 2016-01-11

基金资助

国家重点基础研究发展计划项目(2012CB720100)

Performance simulation and theoretical analysis of microgravity dynamic gas-liquid separator

  • ZHANG Wenwei ,
  • KE Peng
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. School of Transportation Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2015-09-19

  Revised date: 2015-12-03

  Online published: 2016-01-11

Supported by

National Program on Key Basic Research Project of China (2012CB720100)

摘要

开展微重力动态水气分离器性能研究,对水气分离技术设计与优化具有重要意义。根据动态水气分离器内部结构和流动形式,建立了基于环状流-库特流假设的理论分析模型,提出了基于界面概率近似方法的欧拉双流体模型描述由流动形态转化造成的混合流多尺度界面,采用多参考系方法处理转动与非转动区域之间的变量交互问题。应用理论分析与仿真两种方法研究动态水气分离器准稳态和瞬态特性的无量纲参数变化规律。结果表明:理论分析与仿真结果具有较强的相互验证关系;准稳态的增压比和能耗特性能提供设计参数选择依据,能效比能确定最佳工作区间;分离阶段瞬态特性与入口流动参数无关,输运阶段瞬态特性与入口流动参数、液路出口阻尼相关;以输运压力作为液路出口电磁阀关闭充分条件可实现液分离效率不受入口流动参数影响。

本文引用格式

张文伟 , 柯鹏 . 微重力动态水气分离器性能仿真与理论分析[J]. 航空学报, 2016 , 37(9) : 2646 -2658 . DOI: 10.7527/S1000-6893.2015.0354

Abstract

The research on the performance of microgravity dynamic gas-liquid separation is of great significance for the design and optimization of gas-liquid separation technology. A theoretical model based on the annular flow and couette flow assumptions is established according to internal structure and flow patterns of dynamic gas-liquid separator. Eulerian two-fluid model with an interface probability approximation method is proposed to describe multi-scale gas-liquid interfaces in the mixed flow caused by the flow pattern transformation, and the multiple references approach is used to deal with the issue of variables interaction between rotating and non-rotating regions. Both theoretical analysis and simulation are applied to studying the quasi-steady state and transient characteristics with dimensionless parameters of dynamic gas-liquid separator. The results show that the results from simulation model and theoretical model have a strong mutual authentication relationship; quasi-steady state pressure ratio and power consumption characteristics provide a basis for parameters design, and energy efficiency ratio determines the optimum operating range; transient characteristics during the separation stage are independent of inlet flow parameters; however, they are dependent of inlet flow parameters and the damping of liquid outlet during transport stage; once the transport pressure is chosen as a sufficient condition, liquid separation efficiency cannot be affected by inlet flow parameters.

参考文献

[1] 张文伟, 杨春信. 再生式环控生保系统水气分离技术研究进展[J]. 航天医学与医学工程, 2011, 24(6): 444-450. ZHANG W W, YANG C X. Progress of research on gas/liquid separation technology of regenerative environment control and life support system[J]. Space Medicine and Medical Engineering, 2011, 24(6): 444-450 (in Chinese).
[2] 刘乐柱, 张天平. 空间气液分离技术及其应用[J]. 真空与低温, 2010, 16(1): 6-11. LIU L Z, ZHANG T P. Space gas-liquid separation technologies and applications[J]. Vacuum and Cryogenics, 2010, 16(1): 6-11 (in Chinese).
[3] 卜珺珺, 曹军, 杨晓林. 载人航天器气液分离技术综述[J]. 航天器工程, 2014, 23(2): 124-131. BU J J, CAO J, YANG X L. Overview of manned spacecraft gas-liquid separation technology[J]. Spacecraft Engineering, 2014, 23(2): 124-131 (in Chinese).
[4] 王飞, 周抗寒, 李俊荣, 等. 模拟微重力条件下的膜式水气分离器的实验研究[J]. 航天医学与医学工程, 2008, 21(4): 310-315. WANG F, ZHOU K H, LI J R, et al. Experimental studies of a water/gas separator using hydrophilic micro-filtration membrane under simulated microgravity[J]. Space Medicine and Medical Engineering, 2008, 21(4): 310-315 (in Chinese).
[5] 丁立, 王超, 杨春信, 等. 静态水气分离器分离效率实验研究[J]. 航天医学与医学工程, 2011, 24(5): 345-349. DING L, WANG C, YANG C X, et al. Experimental study on separation efficiency of static gas/liquid separator[J]. Space Medicine and Medical Engineering, 2011, 24(5): 345-349 (in Chinese).
[6] 尚文锦, 高峰, 黄永虎, 等. 动态水气分离器微重力性能的地面评测方法研究[J]. 航天医学与医学工程, 2013, 26(3): 174-176. SHANG W J, GAO F, HUANG Y H, et al. Study on ground-based evaluation methods for dynamic liquid/gas separator performance in microgravity[J]. Space Medicine and Medical Engineering, 2013, 26(3): 174-176 (in Chinese).
[7] 赵建福, 彭超, 李晶, 等. 静态水气分离特性的失重飞机实验研究[J]. 工程热物理学报, 2011, 32(5): 799-802. ZHAO J F, PENG C, LI J, et al. Experimental study on performance of a static water-air two-phase separator aboard reduced gravity airplane[J]. Journal of Engineering Thermophysics, 2011, 32(5): 799-802 (in Chinese).
[8] 邱瑞红, 吴志强, 高峰, 等. 空间动态水气分离器失重飞行试验研究[J]. 载人航天, 2015, 21(3): 212-216. QIU R H, WU Z Q, GAO F, et al. Experimental study on performance of a space dynamic gas/liquid separator aboard zero-g plane[J]. Manned Spaceflight, 2015, 21(3): 212-216 (in Chinese).
[9] HOYT N C. The performance of passive cyclonic separators in microgravity[D]. Cleveland: Case Western Reserve University, 2013.
[10] WESTERMANN H, MVLLER R. Design validation -via parabolic flight tests -of a condensate buffer equalizing a discontinuous gas/water flow between a condensing heat exchanger and a water separator: SAE 2006-01-2087[R]. Warrendale: SAE, 2006.
[11] HOYT N C, KAMOTANI Y, KADAMBI J. Computational investigation of the nasa cascade cyclonic separation device: AIAA-2008-0809[R]. Reston: AIAA, 2008.
[12] 杨飞, 张永健. 微重力下气液分离特性的数值模拟[J]. 北京交通大学学报, 2014, 38(4): 14-19. YANG F, ZHANG Y J. Numerical simulation of microgravity gas-liquid separation characteristics[J]. Journal of Beijing Jiaotong University, 2014, 38(4): 14-19 (in Chinese).
[13] 张文伟, 杨春信, 王晔. 直通旋风式高压水分离器性能研究[C]//中国航空学会2009年第八届环控暨人机工效学术交流会议论文集. 北京: 中国航空学会, 2009: 407-411. ZHANG W W, YANG C X, WANG Y. Performance study of straight rotate and high pressure gas-liquid separator[C]//Conference of Environment Control and Human-Machine Ergonomics. Beijing: Chinese Society of Aeronautics and Astronautics, 2009: 407-411 (in Chinese).
[14] ZHANG W W, YANG C X, KE P. Computational investigation of the high pressure water separator[C]//Asia-Pacific International Symposium on Aerospace Technology. Beijing: Chinese Society of Aeronautics and Astronautics, 2010: 99-103.
[15] 张文伟, 杨春信, 丁立, 等. 静态水气分离器分离效率数值模拟[J]. 航天医学与医学工程, 2012, 25(1): 61-65. ZHANG W W, YANG C X, DING L, et al. Numerical simulation on separation efficiency of static gas-liquid separator[J]. Space Medicine and Medical Engineering, 2012, 25(1): 61-65 (in Chinese).
[16] 张文伟, 柯鹏, 杨春信, 等. 气液两相流界面多尺度问题可计算性研究进展[J]. 化工学报, 2014, 65(12): 4645-4654. ZHANG W W, KE P, YANG C X, et al. Progress of computability of multi-scale interface problems in gas-liquid two-phase flow[J]. CIESC Journal, 2014, 65(12): 4645-4654 (in Chinese).
[17] ŠTRUBELJ L, TISELJ I. Two-fluid model with interface sharpening[J]. International Journal for Numerical Methods in Engineering, 2010, 85(5): 575-590.
[18] MINATO A, TAKAMORI K, ISHIDA N. An extended two-fluid model for interface behavior in gas-liquid two-phase flow[C]//Proceedings of the 8th International Conference on Nuclear Engineering. New York: ASME, 2000: 1-9.
[19] ŠTRUBELJ L, TISELJ I, MAVKO B. Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 741-750.
[20] HÖHNE T, VALLÉE C. Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model[J]. Journal of Comput ational Multiphase Flows, 2010, 2(3): 131-143.
[21] YOON H Y, CHO H K, LEE J R, et al. Multi-scale thermal-hydraulic analysis of PWRS using the CUPID code[J]. Nuclear Engineering and Technology, 2012, 44(8): 831-846.
[22] KONDO S, TOBITA Y, MORITA K, et al. Current status and validation of the SIMMER-III LMFR safety analysis code[C]//Proceedings of the 7th International Conference on Nuclear Engineering. Kyoto: JSME, 1999: 1-10.
[23] COSTE P. A large interface model for two-phase CFD[J]. Nuclear Engineering and Design, 2013, 255: 38-50.
[24] HÄNSCH S, LUCAS D, KREPPER E, et al. A multi-field two-fluid concept for transitions between different scales of interfacial structures[J]. International Journal of Multiphase Flow, 2012, 47(3): 171-182.
[25] LANZARONE A W, DEAN W C, HOLDER D W. Development of a mostly liquid separator for use on the international space station: SAE972374[R]. Warrendale: SAE, 1997.
[26] 林建平, 阮晓东, 陈邦国, 等. 流体力学[M]. 北京: 清华大学出版社, 2005: 237, 276-278, 297-298. LIN J P, RUAN X D, CHEN B G, et al.. Fluid mechanics[M]. Beijing: Tsinghua University Press, 2005: 237, 276-278, 297-298 (in Chinese).
[27] ISHII M, HIBIKI T. Thermo-fluid dynamics of two-phase flow[M]. New York: Springer, 2006: 156-162.
[28] TROSHKO A A, HASSAN Y A. A two-equation turbulence model of turbulent bubbly flows[J]. International Journal of Multiphase Flow, 2000, 27(11): 1965-2000.
[29] CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles[M]. London: Academic Press, 1978: 111-116.
[30] ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. Aiche Journal, 1979, 25(5): 843-855.
[31] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[32] UBBINK O. Numerical prediction of two fluid systems with sharp interfaces[D]. London: Imperial College of Science, Technology and Medicine, 1997.
[33] OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246.
[34] VASQUEZ S A, IVANOV V A. A phase coupled method for solving multiphase problems on unstructured meshes[C]//Proceedings of ASME 2000 Fluids Engineering Division Summer Meeting. Boston: ASME, 2000: 743-748.

文章导航

/