面向再入目标跟踪的估计与辨识联合优化算法
收稿日期: 2015-07-08
修回日期: 2015-11-26
网络出版日期: 2015-12-24
基金资助
国家自然科学基金(61135001,61374023,61374159);航空科学基金(20125153)
Joint optimization algorithm of estimation and identification for reentry target tracking
Received date: 2015-07-08
Revised date: 2015-11-26
Online published: 2015-12-24
Supported by
National Natural Science Foundation of China (61135001,61374023,61374159);Aeronautical Science Foundation of China (20125153)
准确的弹道系数辨识和精确的目标状态估计是再入目标高精度跟踪与高可靠识别的关键。一方面,状态估计的误差会造成模型参数(弹道系数)的辨识风险;另一方面,模型参数的辨识偏差又会导致模型失配从而降低目标状态的估计精度。因此,需要实现再入目标的状态估计和参数辨识的联合优化。针对再入目标弹道系数未知情形,提出了一种基于期望最大化(EM)框架并采用粒子滤波(PF)平滑器实现的PF-EM联合优化算法。在E步基于粒子平滑器得到目标状态的后验平滑估计,M步采用数值优化算法更新上一次迭代的弹道系数,通过E步和M步的不断迭代,以保证状态估计和弹道系数辨识的一致性。算法仿真对比表明:所提算法的状态估计和参数辨识精度均优于传统的状态增广算法。
张金凤 , 何重阳 , 梁彦 . 面向再入目标跟踪的估计与辨识联合优化算法[J]. 航空学报, 2016 , 37(5) : 1634 -1643 . DOI: 10.7527/S1000-6893.2015.0321
Reliable identification of ballistic coefficient and accurate estimation of target state are important issues and coupled:the state estimation error may trigger identification risk while identification risk causes state estimation error due to modeling mismatch. Therefore, it is essential to estimate the target state and identify unknown model parameters jointly. In this paper, the joint optimization algorithm PF-EM is proposed for tracking a reentry target with unknown ballistic coefficient, which is realized by using particle filter (PF) smoother under the expectation-maximization (EM) iterative framework. In the E-step, the random particle sampling strategy is utilized to approximate the likelihood function to deal with the inherited nonlinearity. In the M-step, the numerical optimization algorithm is applied to update mass-to-drag ratio. In the simulation compared with the traditional algorithm which augments the state vector with the unknown parameter, the proposed algorithm shows the improvement in both state estimate and parameter identification.
[1] LI X R, JILKOV V P. Survey of maneuvering target tracking. Part II:Motion models of ballistic and space targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1):96-119.
[2] FARINA A, RISTIC B, BENVENUTI D. Tracking a ballistic target:Comparison of several nonlinear filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3):854-867.
[3] 郭利杰. 再入目标的雷达跟踪与质阻比估计[D]. 西安:西安电子科技大学, 2013:1-10. GUO L J. Radar tracking and mass-to-drag ratio estimation for reentry targets[D]. Xi'an:Xidian University, 2013:1-10(in Chinese).
[4] RISTIC B, FARINA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceedings Radar, Sonar & Navigation, 2003, 150(2):65-70.
[5] HAN L J, CUI S H, MIAO S B, et al. The close ballistic target tracking based on extended Kalman filter[J]. Applied Mechanics & Materials, 2013, 347-350:3639-3643.
[6] 俞建国, 刘梅, 陈锦海. 弹道目标航迹片段关联及优化[J]. 航空学报, 2011, 32(10):1897-1904. YU J G, LIU M, CHEN J H. Ballistic target track segments association and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1897-1904(in Chinese).
[7] CARDILLO G P, MRSTIK A, PLAMBECK V T. A track filter for reentry objects with uncertain drag[J]. IEEE Transactions on Aerospace & Electronic Systems, 1999, 35(2):394-409.
[8] SIOURIS G M, CHEN G, WANG J. Tracking an incoming ballistic missile using an extended interval Kalman filter[J]. IEEE Transactions on Aerospace & Electronic Systems, 1997, 33(1):232-240.
[9] COSTA P J. Adaptive model architecture and extended Kalman-Bucy filters[J]. IEEE Transactions on Aerospace & Electronic Systems, 1994, 30(2):525-533.
[10] 饶彬. 对抗条件下弹道目标的雷达跟踪技术[D]. 长沙:国防科学技术大学, 2011:1-15. RAO B. Study on radar tracking technologies of ballistic targets in the presence of countermeasures[D]. ChangSha:National University of Defense Technology, 2011:1-15(in Chinese).
[11] LOGOTHETIS A, KRISHNAMURTHY V. Expectation maximization algorithms for MAP estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 1999, 47(8):2139-2156.
[12] TASKAR B, GRACA J V, GANCHEV K. Expectation Maximization and posterior constraints[J]. Nips, 2007:569-576.
[13] LOGOTHETIS A, KRISHNAMURTHY V, HOLST J. A Bayesian EM algorithm for optimal tracking of a maneuvering target in clutter[J]. Signal Processing, 2002, 82(3):473-490.
[14] WILLETT P, RUAN Y, STREIT R. PMHT:Problems and some solutions[J]. IEEE Transactions on Aerospace & Electronic Systems, 2002, 38(3):738-754.
[15] LI Z, CHEN S, LEUNG H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46(2):496-507.
[16] JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
[17] HAI H D, DAI S W, CONG Y C, et al. Performance comparison of EKF/UKF/CKF for the tracking of ballistic target[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2012, 10(7):1692-1699.
[18] CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved particle filter for nonlinear problems[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(1):2-7.
[19] WU C L, JU Y F, HAN C Z. An improved particle filter with applications in ballistic target tracking[J]. Sensors & Transducers, 2014, 172(6):196-201.
[20] SCHON T B, WILLS A, NINNESS B. System identification of nonlinear state-space models[J]. Automatica, 2011, 47(1):39-49.
[21] ZIA A, KIRUBARAJAN T, REILLY J P, et al. An EM algorithm for nonlinear state estimation with model uncertainties[J]. IEEE Transactions on Signal Processing, 2008, 56(3):921-936.
[22] 周万幸. 弹道导弹雷达目标识别技术[M]. 北京:电子工业出版社, 2011:166-169. ZHOU W X. BMD radar target recognition technology[M]. Beijing:Publishing House of Electronics Industry, 2011:166-169(in Chinese).
[23] GIBSON S, NINNESS B. Robust maximum-likelihood estimation of multivariable dynamic systems[J]. Automatica, 2005, 41(10):1667-1682.
[24] 金文彬, 刘永祥, 黎湘, 等. 再入目标质阻比估计算法研究[J]. 国防科技大学学报, 2004, 26(5):46-51. JIN W B, LIU Y X, LI X, et al. Research on estimation of mass-to-drag ratio of reentry objects[J]. Journal of National University of Defense Technology, 2004, 26(5):46-51(in Chinese).
/
〈 | 〉 |