基于螺旋理论描述的空间相对运动姿轨同步控制
收稿日期: 2015-09-03
修回日期: 2015-11-16
网络出版日期: 2015-12-21
基金资助
国家自然科学基金(11472213);航空科学基金
Synchronization control of relative motion for spacecraft with screw theory-based description
Received date: 2015-09-03
Revised date: 2015-11-16
Online published: 2015-12-21
Supported by
National Natural Science Foundation of China (11472213); Aeronautical Science Foundation of China
对于姿轨运动存在严重耦合的空间相对接近操作,必须解决相对运动的姿轨同步控制问题。传统的相对姿轨分开建模串行控制方法,忽略了姿轨耦合,控制周期长且姿轨同步性差,显然不能满足要求。基于螺旋理论中的对偶数描述,建立了航天器六自由度相对运动模型,不仅包含了姿轨耦合项,而且形式统一有利于同步控制律的设计。针对模型中的耦合项进行分析,给出了相对姿轨耦合产生的成因。建立了相对姿轨同步误差,考虑模型的非线性,基于非线性反馈设计了一种同步控制律以消除该误差,并利用Lyapunov理论证明了控制律的稳定性。以两航天器交会接近的最后逼近段进行数字仿真,并与PD控制相对比,验证了所提方法的有效性,同时验证了所提方法可以实现姿轨控制的同步收敛,对于空间相对运动的姿轨同步操作具有重要意义。
朱战霞 , 马家瑨 , 樊瑞山 . 基于螺旋理论描述的空间相对运动姿轨同步控制[J]. 航空学报, 2016 , 37(9) : 2788 -2798 . DOI: 10.7527/S1000-6893.2015.0334
For the approaching operations with intensity coupling between position and attitudes, precise synchronization control of relative translation and rotation is one of the essentials to be solved. Traditionally, translation and rotation motion are modeled and controlled separately, in which the coupling between relative position and attitudes is ignored, so the control period is long and the synchronization cannot be guaranteed. This paper investigates the synchronization control problem of spacecraft relative motion. A six-degree-of-freedom relative motion model is proposed using the dual-number representation of screw theory,which can not only describe the coupling effect between the translational movement and the rotational one, but also make the model of translation and rotation in the same style to the benefits of designing controller easy. The causes of couple forming are presented after analyzing the coupling term of the relative motion model. A synchronization error constructed by the relative translation and rotation is introduced. A synchronization control law is designed based on nonlinear feedback to eliminate the error, and its stability is proved by Lyapunov methods. Choosing the final approaching phase of docking and rendezvous to make numerical simulation, the results demonstrate the validity of the proposed method by comparing with PD controller. Meanwhile, it is proved that the proposed method can achieve synchronous convergence of the attitudes and orbit control, which has important implications for the required attitudes and orbit synchronization operations.
[1] SCHAUB H, JUNKINS J L. Stereographic orientation parameters for attitude dynamics: A generalization of the Rodrigues parameters[J]. Journal of the Astronautical Sciences, 1996, 44(1): 1-19.
[2] 朱志斌, 李果, 何英姿, 等. 基于滚动优化和微分 Theta-D 方法的快速绕飞航天器姿轨协同控制[J]. 宇航学报, 2012, 33(2): 167-174. ZHU Z B, LI G, HE Y Z, et al. Cooperative relative attitude and translation control based on finite horizon optimization and differential Theta-D method[J]. Journal of Astronautics, 2012, 33(2): 167-174 (in Chinese).
[3] 朱志斌, 李果, 何英姿, 等. 基于Theta-D 次优控制器设计的相对姿轨耦合控制[J]. 现代防御技术, 2011, 39(2): 73-78. ZHU Z B, LI G, HE Y Z, et al. Relative coupling attitude and positon control based on Theta-D suboptimal control design[J]. Modern Defence Technology, 2011, 39(2): 73-78 (in Chinese).
[4] 铁钰嘉, 岳晓奎, 曹静. 基于航天器姿轨耦合模型的非线性前馈控制[J].中国空间科学技术, 2010, 29(3): 126-131. TIE Y J, YUE X K, CAO J. Nonlinear feed forward control on attitude and orbital coupling model for spacecraft[J]. Chinese Space Science and Technology, 2010, 29(3): 126-131(in Chinese).
[5] XU Y, TATSCH A, FITZ-COY N G. Chattering free sliding mode control for a 6 DOF formation flying mission[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA, 2005: 15-18.
[6] YAMANAKA K. Simultaneous translation and rotation control law for formation flying satellites[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2000: 1-4.
[7] SUBBARAO K, WELSH S J. Nonlinear control of motion synchronization for satellite proximity operations[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1284-1294.
[8] WELSH S J, SUBBARAO K. Adaptive synchronization and control of free flying robots for capture of dynamic free-floating spacecrafts[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Reston: AIAA, 2004: 1193-1214.
[9] BRANETS V N, SHMYGLEVSKY I P. Introduction to the theory of strapdown inertial navigation systems[R]. Moscow: Nanka, 1992.
[10] YANG A T. Application of quaternion algebra and dual numbers to the analysis of spatial mechanisms[D]. Columbia: Columbia University, 1994: 21-36.
[11] 卢宏琴. 基于旋量理论的机器人运动学和动力学研究及其应用[D]. 南京: 南京航空航天大学, 2007: 16-28. LU H Q. Kinematics and dynamics research of robot manipulators and its application based on screw theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007: 16-28(in Chinese).
[12] WANG X, YU C. Unit-dual-quaternion-based PID control scheme for rigid-body transformation[C]//Preprints of the 18th IFAC world Congress. Milano: IFAC Secretariat, 2011: 9296-9301.
[13] FRUH C, JAH M K. Coupled orbit-attitude motion of high area-to-mass ratio (HAMR) objects including efficient self-shadowing[J]. Acta Astronautica, 2014, 95(2): 227-241.
[14] ZHANG F, DUAN G R. Robust integrated translation and rotation finite-time maneuver of a rigid spacecraft based on dual quaternion[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2011: 1-10.
[15] WANG J Y, LIANG H Z, SUN Z W, et al. Relative motion coupled control based on dual quaternion[J]. Aerospace Science and Technology, 2013, 25(1): 102-113.
[16] PHAM H L, PERDEREAU V, ADOMO B V, et al. Position and orientation control of robot manipulators using dual quaternion feedback[C]//International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE Press, 2010: 658-663.
[17] WU J, HAN D, LIU K, et al. Nonlinear suboptimal synchronized control for relative position and relative attitude tracking of spacecraft formation flying[J]. Journal of the Franklin Institute, 2015, 352(4): 1495-1520.
[18] XIONG J J, ZHENG E H. Position and attitude tracking control for a quadrotor UAV[J]. ISA Transactions, 2014, 53(3): 725-731.
[19] WANG J Y, LIANG H Z, SUN Z W, et al. Finite-time control for spacecraft formation with dual-number-based description[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(3): 950-962.
[20] SEGAL S, GURFIL P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 1045-1050.
[21] 李鹏,岳晓奎,袁建平. 基于Theta-D 方法的在轨操作相对姿轨耦合控制[J], 中国空间科学技术, 2012, 32(4): 8-12. LI P, YUE X K, YUAN J P. Coupled control of relative positon and attitude base on Thteta-D technique for on-orbit operations[J]. Chinese Space Science and Technology, 2012, 32(4): 8-12 (in Chinese).
[22] 刘剑, 朱战霞, 马家瑨. 基于螺旋理论的航天器相对运动建模与控制[J].西北工业大学学报,2013, 31(4): 590-595. LIU J, ZHU Z X, MA J J. Establishing spacecraft's relative orbit and attitude coupling dynamics model based on screw theory[J]. Journal of Northwestern Polytechnical University, 2013, 31(4): 590-595 (in Chinese).
/
〈 | 〉 |