电子与控制

升降舵辅助操纵的自转旋翼机自适应姿态控制

  • 林清 ,
  • 蔡志浩 ,
  • 闫坤 ,
  • 王英勋
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
    2. 北京航空航天大学 飞行器控制一体化国防重点实验室, 北京 100083
林清 男, 博士研究生。主要研究方向:复合式无人机飞行控制。 Tel: 010-82338792 E-mail: linqingbh@163.com;闫坤 男, 硕士研究生。主要研究方向:复合式无人机飞行控制。 E-mail: 1182668247@qq.com;王英勋 男, 博士, 研究员, 博士生导师。主要研究方向:无人机自主控制、无人机系统工程。 Tel: 010-82338792 E-mail: wangyx@buaa.edu.cn

收稿日期: 2015-09-24

  修回日期: 2015-11-13

  网络出版日期: 2015-12-18

Adaptive attitude control of autogyro augmented with elevator

  • LIN Qing ,
  • CAI Zhihao ,
  • YAN Kun ,
  • WANG Yingxun
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
    2. Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100083, China

Received date: 2015-09-24

  Revised date: 2015-11-13

  Online published: 2015-12-18

摘要

针对常规自转旋翼机俯仰操纵方式存在的问题,提出了一种升降舵辅助操纵的自转旋翼机布局。采用解析叶素积分方法建立了自转旋翼气动模型,通过与风洞试验数据及数值叶素积分法的对比验证了其合理性。提出了基于神经网络动态逆的自转旋翼机姿态控制方法,采用动态逆技术设计了基本控制器,采用在线神经网络自适应补偿建模误差、外界干扰和设计模型误差导致的不确定逆误差。提出了基于动态控制分配技术的升降舵-旋翼纵向周期变距分配方法,以协调二者在控制效率和带宽方面的差异。仿真结果表明,提出的升降舵辅助操纵方式可以有效地降低旋翼机桨盘的调整频率和幅值;提出的姿态控制方法具有良好的控制性能和鲁棒性;动态控制分配器能够合理地协调升降舵和旋翼纵向周期变距。

本文引用格式

林清 , 蔡志浩 , 闫坤 , 王英勋 . 升降舵辅助操纵的自转旋翼机自适应姿态控制[J]. 航空学报, 2016 , 37(9) : 2820 -2832 . DOI: 10.7527/S1000-6893.2015.0337

Abstract

To deal with the problems of pitching control mode of conventional autogyro, a novel autogyro configuration augmented with elevator is proposed. The autorotating rotor is modeled with closed-form blade element methods, which is verified by comparing calculation results with data from wind tunnel tests and numerical integration blade element methods. Baseline attitude controller is designed based on dynamic inversion, and adaptive neural networks are used to estimate and eliminate the unknown uncertain inverse error caused by modelling error, external disturbances and design model error. Dynamic control allocation is used to coordinate the control efficiency and bandwidth differences between the elevator and the rotor longitudinal cyclic control. Simulation results show that the proposed autogyro configuration can effectively reduce the deflection frequency and amplitude of the rotor longitudinal cyclic control, the proposed controller has good performance and robustness, and the dynamic control allocator can coordinate the elevator and the rotor longitudinal cyclic control to achieve the desired moments.

参考文献

[1] LEISHMAN J G. Development of the autogiro: A technical perspective[J]. Journal of Aircraft, 2004, 41(4): 765-781.
[2] 王焕瑾, 高正. 自转旋翼的气动优势和稳定转速[J]. 航空学报, 2001, 22(4): 337-339. WANG H J, GAO Z. Aerodynamic virtue and steady rotary speed of autorotating rotor[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4): 337-339(in Chinese).
[3] HOUSTON S S, THOMSON D G. The aerodynamics of gyroplanes: CAA Paper 2009/02[R]. West Sussex: Civil Aviation Authority, 2010.
[4] HOUSTON S S. Identification of autogyro longitudinal stability and control characteristics[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 391-399.
[5] THOMSON D G, HOUSTON S S, SPATHOPOULOS V M. Experiments in autogiro airworthiness for improved handling qualities[J]. Journal of the American Helicopter Society, 2005, 50(4): 295-301.
[6] BAGIEV M, THOMSON D G. Handling qualities evaluation of an autogiro against the existing rotorcraft criteria[J]. Journal of Aircraft, 2009, 46(1): 168-174.
[7] 崔钊, 韩东, 李建波, 等. 加装格尼襟翼的自转旋翼气动特性研究[J]. 航空学报, 2012, 33(10): 1791-1799. CUI Z, HAN D, LI J B, et al. Study on aerodynamic characteristics of auto-rotating rotors with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1791-1799 (in Chinese).
[8] 朱清华. 自转旋翼飞行器总体设计关键技术研究[D]. 南京: 南京航空航天大学, 2007. ZHU Q H. Research on key technologies of gyroplane preliminary design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
[9] 王俊超, 李建波, 韩东. 自转旋翼机飞行性能理论建模技术[J]. 航空学报,2014, 35(12): 3244-3253. WANG J C, LI J B, HAN D. Theoretical modeling technology for gyroplane flight performance[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3244-3253(in Chinese).
[10] 王俊超, 李建波. 自转旋翼/机翼组合构型飞行器飞行动力学特性[J]. 南京航空航天大学学报, 2011, 43(3): 399-405. WANG J C, LI J B. Flight dynamics characteristics of autorotating rotor /wing combination aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2011, 43(3): 399-405 (in Chinese).
[11] 王俊超, 李建波. 机翼对自转旋翼机纵向稳定性的影响[J]. 航空学报, 2014, 35(1): 151-160. WANG J C, LI J B. Effects of wing on autogyro longitudinal stability[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 151-160 (in Chinese).
[12] 陈淼. 自转式无人旋翼机飞行控制技术研究[D]. 南京: 南京航空航天大学, 2012. CHEN M. Research on flight control technologies for unmanned gyroplane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[13] CARTER J. CarterCopter—A high technology gyro-plane[C]//Proceedings of the American Helicopter Society Vertical Lift Aircraft Design Conference. San Francisco: American Helicopter Society, 2000: 1-9.
[14] LOPEZ C A, WELLS V L. Dynamics and stability of an autorotating rotor/wing unmanned aircraft[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 258-270.
[15] TERVAMAKI J. Autogyro safety[EB/OL]. (2008-11-05)[2015-09-12]. http://www.tervis.fidisk.fi/JTsite/safety/Gyrosafety.html.
[16] LAINE S. Effect of horizontal tail on the stability of the VPM M16 autogyro: Report AALTO-AM-18 [R]. Otaniemi: Aalto University School of Science and Technology, 2010.
[17] MATTHEW J T. Elevators in autogyro propeller wake enable low-speed pitch control[J]. Aircraft Engineering and Aerospace Technology, 2011, 83(3): 154-159.
[18] MATTHEW J T, CARTER R G. Pitch control benefits of elevators for autogyros in low-speed forward flight[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 1-9.
[19] CARTER J. Technical issues relative to high-μ rotor flight (μ>0.6)[EB/OL]. (2015-09-08)[2015-09-12]. http://www.cartercopters.com/tech_issues.
[20] STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. Hoboken, NJ: John Wiley & Sons, 2003: 101-138.
[21] WHEATLEY J B. The aerodynamic analysis of the gyroplane rotating-wing system: No.492[R]. Washington, D.C.: National Advisory Committee for Aeronautics, 1934.
[22] JAMES M R. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight[D]. Atlanta: Georgia Institute of Technology, 2008.
[23] PROUTY R W. Helicopter performance, stability, and control[M]. Boston: PWS Engineering, 1986: 163-187.
[24] ZHU B, HUO W. Robust nonlinear control for a model-scaled helicopter with parameter uncertainties[J]. Nonlinear Dynamics, 2013, 73(1-2): 1139-1154.
[25] LEITNER J, CALISE A R, PRASAD J V. Analysis of adaptive neural networks for helicopter flight control[J]. Journal of Guidance, Control, and Dynamics. 1997, 20(5): 972-979.
[26] RYSDYK R, CALISE A. Robust nonlinear adaptive flight control for consistent handling qualities[J]. IEEE Transactions on Control Systems Technology, 2005, 13(6): 896-910.
[27] HARKEGARD O. Dynamic control allocation using constrained quadratic programming[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1028-1034.

文章导航

/