面向飞/发一体化设计的高温尾喷口流场分析
收稿日期: 2015-11-24
修回日期: 2015-12-04
网络出版日期: 2015-12-08
基金资助
中航工业产学研专项项目
Analysis of high temperature nozzle exhaust flow towards aircraft-engine integrated design
Received date: 2015-11-24
Revised date: 2015-12-04
Online published: 2015-12-08
Supported by
AVIC Special Project
结合飞/发一体化设计理念,以提升红外隐身性能为目的,引入横向掺混技术进行尾喷管构型设计。应用计算流体力学(CFD)数值仿真方法,分别分析了圆形喷管和矩形喷管流场温度分布,并提取矩形喷管中心面,研究喷管带小孔壁板偏折角对尾流冷却效果的影响。研究结果表明:相对于入口热流温度,矩形喷口降温率约为30%,尾气流喷出后偏向两侧流动,高温核心区体积快速衰减;圆形喷口降温率约为10%,尾气流喷出后沿轴向一直保持圆柱形,高温核心区体积衰减缓慢。矩形喷口主动冷却效果明显高于圆形喷口,更有利于实现飞/发一体化的热管理及红外隐身。同时,中面带小孔壁板偏折角的大小与主动冷却效果也存在密切关系。
李书 , 王黎 , 吴烁 , 申东 , 黄瑞 , 王强 . 面向飞/发一体化设计的高温尾喷口流场分析[J]. 航空学报, 2016 , 37(1) : 364 -370 . DOI: 10.7527/S1000-6893.2015.0333
Combined with the aircraft-engine integration concept,transverse jet mixing technology is introduced to conduct the nozzle design in order to improve infrared stealth performance.The temperature field of circular and rectangular nozzle exhaust flow is analyzed by computational fluid dynamics(CFD) numerical simulation method,and we extract the central face of the rectangular nozzle to observe the cooling effect of transverse jet walls along with different angles.The results show that compared with the inlet temperature,the cooling ratio of rectangular nozzle reaches 30%approximately,the exhaust plume flows to both sides,and the volume of the core high temperature flow decreases obviously;circular nozzle cooling rate is about 10%,the exhaust plume keeps cylindrical along the central line,and the core jet volume attenuation is slow.Consequently,the rectangular nozzle cooling efficiency is significantly higher than that of the circular nozzle and is more advantageous to realize aircraft-engine integrated thermal management as well as infrared stealth.Additionally,active cooling effect also has close relationship with the deflection angle magnitude of the mid wall with transverse jet.
[1] 梁彩云,谢业平,李泳凡,等.飞/发性能一体化技术在航空发动机设计中的应用[J].航空发动机,2015,41(3):1-5.LIANG C Y,XIE Y P,LI Y F,et al.Application of integrated aircraft/engine technology in aeroengine designing[J].Aeroengine,2015,41(3):1-5(in Chinese).
[2] HESS P.Engine aircraft systems integration course[C]//AIAA 28th Joint Propulsion Conference and Exhibit.Reston:AIAA,1992:1-5.
[3] BEALE D K,ZELENAK M.Development and validation of a freejet technique for inlet-engine compatibility testing[C]//AlAA 17th Aerospace Ground Testing Conference.Reston:AIAA,1992:1-19.
[4] BEALE D E,KELLY P G.Subscale validation of a freejet inlet-engine test capability[C]//AIAA 28th Joint Propulsion Conference and Exhibit.Reston:AIAA,1993:1-19.
[5] HALE A,DAVIS M,SORBAUGH J.A numerical simulation capability for analysis of aircraft inlet-engine compatibility[J].Journal of Engineering for Gas Turbines & Power,2004,128(3):127-137.
[6] HALE A,CHALK J,KLEPPER J,et.al.Turbine engine analysis compressor code:TEACC-Part Ⅱ:Multi-stage compressors and inlet distortion[C]//17th AIAA Applied Aerodynamics Conference.Reston:AIAA,1999:1-13.
[7] HERRICK P.Fighter aircraft/propulsion integration[C]//Aircraft Systems,Design & Technology Meeting.Reston:AIAA,1986:1-12.
[8] GEORGE T C,LEE E E.Experimental and analytical investigation of axisymmetri supersonic cruise nozzle geometry at Mach numbers from 0.60 to 1.30:NASA TP 1953-C1[R].Washington,D.C.:NASA,1981:23-36.
[9] 理查森.现代隐身飞机[M].北京:科学出版社,1991:56-78.RICHARDSON.Modern stealth aircraft[M].Beijing:Science Press,1991:56-78(in Chinese).
[10] 张勃,吉洪湖.大宽高比矩形喷管的射流与外流掺混特性的数值研究[J].航空动力学报,2005,20(1):104-110.ZHANG B,JI H H,Numerical study of internal and external flow mixing for rectangular nozzles with large aspect ratio[J].Journal of Aerospace Power,2005,20(1):104-110(in Chinese).
[11] 蔡毅.浅谈现代战斗机的红外隐身技术[J].红外技术,1994,16(6):6-10.CAI Y.About infrared camouflage technology of modern fighters[J].Infrared Technology,1994,16(6):6-10(in Chinese).
[12] 施德恒,刘万福.红外隐身技术述评[J].应用光学,1996,17(5):1-5.SHI D H,LIU W F.A review for the IR body-hiding technique[J].Applied Optics,1996,17(5):1-5(in Chinese).
[13] 杨旭,夏焕明,刘德彰.超音尾喷流红外抑制方案的研究[J].航空动力学报,2002,17(2):155-159.YANG X,XIA H M,LIU D Z.Experimental investigation of exhaust jet infrared suppression for supersonic flow[J].Journal of Aerospace Power,2002,17(2):155-159(in Chinese).
[14] 《航空发动机设计手册》总编委会.航空发动机设计手册[M].北京:航空工业出版社,2000:157-196.Editorial Commitee of Aircraft Engine Desing Handbook.Aircraft engine design manual[M].Beijing:Aviation Industry Press,2000:157-196(in Chinese).
[15] TILLMAN T G,ATERSON R W,RESZ W M.Supersonic nozzle mixer ejector[J].Journal of Propulsion & Power,2012,8(2):513-519.
[16] NARAYANAN A K,DAMODARAN K A.Supersonic-ejector characteristics using a Petal nozzle[J].Journal of Propulsion & Power,1994,10(5):742-744.
[17] 张青藩,尚守堂.一种抑制超声速气流红外辐射的新途径[J].推进技术,1999,20(5):67-71.ZHANG Q F,SHANG S T.A new approach for suppression infrared radiation of supersonic jets[J].Journal of Propulsion Technology,1999,20(5):67-71(in Chinese).
[18] 刘德彰,刘勇,王锁芳,等.利用发动机排气引射作用的综合效果实验研究[J].推进技术,1993,14(2):40-46.LIU D Z,LIU Y,WANG S F,et al.The experimental investigation of combination effect by using injection effect of aroengine jet exhaust[J].Journal of Propulsion & Power,1993,14(2):40-46(in Chinese).
/
〈 | 〉 |