通用飞机结冰适航验证关键技术及工程应用
收稿日期: 2015-08-17
修回日期: 2015-11-10
网络出版日期: 2015-12-04
Key airworthiness validation technologies for icing of general aviation aircraft and their engineering application
Received date: 2015-08-17
Revised date: 2015-11-10
Online published: 2015-12-04
王洪伟 , 李先哲 , 宋展 . 通用飞机结冰适航验证关键技术及工程应用[J]. 航空学报, 2016 , 37(1) : 335 -350 . DOI: 10.7527/S1000-6893.2015.0308
Civil aircraft must conduct icing airworthiness validation according to relevant icing requirements published by airworthiness authority in order to obtain operation permit in icing environment.The features of general aviation aircraft result in the fact that general aviation aircraft face more severe icing problems and more strict icing airworthiness certification requirements when compared to large transport category aircraft.This paper researches relevant icing airworthiness documents published by FAA and recent international achievements on icing problems,and then discusses some key icing airworthiness validation technologies for general aviation aircraft,their state of art and development trends,based on an engineering application of icing airworthiness validation for a general aviation aircraft.This paper shows that a deliberate combination of several icing airworthiness validation technologies is necessary for general aviation aircraft's icing airworthiness certification program and the issues of icing has become a part of aircraft's aerodynamic layout technology.
Key words: icing; digital simulation; wind tunnel test; flight test; airworthiness
[1] GREEN S D.A study of U.S.inflight icing accidents,1978 to 2002:AIAA-2006-0082[R].Reston:AIAA,2006.
[2] SMALLEY C L.Certification of Part 23 airplanes for flight in icing conditions:AC 23.1419-2D[R].Washington,D.C.:FAA,2007.
[3] CABLER S J M.Aircraft ice protection:AC 20-73A[R].Washington,D.C.:FAA,2006.
[4] MCGRATH J K.Radio technical commission for aeronautic,Inc.Document RTCA/DO-178B:AC 20-115B[R].Washington,D.C.:FAA,1993.
[5] BEARD M C.Hazards following ground deicing and groundoperations in conditions conducive to aircraft icing:AC 20-117[R].Washington,D.C.:FAA,1982.
[6] HEMPE D W.Turbojet,turboprop,and turbofan engine induction system icing and ice ingestion:AC 20-147[R].Washington,D.C.:FAA,2004.
[7] CABLER S J M.RTCA Document DO-160E,environmental conditions and test procedures for airborne equipment:AC 21-16E[R].Washington,D.C.:FAA,2005.
[8] JACKSON J E.Powerplant guide for certification of Part 23 airplanes and airships:AC 23-16A[R].Washington,D.C.:FAA,2004.
[9] SHOWERS D R.Systems and equipment guide for certification of Part 23 airplanes:AC 23-17B[R].Washington,D.C.:FAA,2004.
[10] BAKER D D.Means of compliance with title 14 CFR,Part 23,§ 23.629,flutter:AC 23.629-1B[R].Washington,D.C.:FAA,2004.
[11] JACKSON J E.Equipment,systems,and installations in Part 23 airplanes:AC 23.1309-1C[R].Washington,D.C.:FAA,1999.
[12] BALLOUGH J J.Pilot guide flight in icing conditions:AC 91-74[R].Washington,D.C.:FAA,2002.
[13] HARRINGTON D R.Pilot guide large aircraft ground deicing:AC 120-58[R].Washington,D.C.:FAA,1992.
[14] DALBEY C B.Ground deicing and anti-icing program:AC 120-60B[R].Washington,D.C.:FAA,2004.
[15] WHITE W J.Ground deicing & anti-icing training & checking:AC 135-16[R].Washington,D.C.:FAA,1994.
[16] WHITE W J.Pilot guide small aircraft ground deicing(pocket):AC 135-17[R].Washington,D.C.:FAA,1994.
[17] MALONE D K.Flight test guide for certification of Part 23 airplanes:AC 23-8B[R].Washington,D.C.:FAA,2003.
[18] POTAPCZUK M G.LEWICE/E:An Euler based ice accretion code:NASA TM-105389[R].Washington,D.C.:NASA,1992.
[19] RUFF G A,BERKOWITZ B M.Users manual for the NASA Lewis ice accretion prediction code(LEWICE):NASA CR-185129[R].Washington,D.C.:NASA,1990.
[20] BRANDI M V,ESPOSITO B.Ice accretion prediction on multi-element airfoils:AIAA-1997-0177[R].Reston:AIAA,1997.
[21] FORTIN G,ILINCA A,LAFORTE J L,et al.Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling:AIAA-2003-1076[R].Reston:AIAA,2003.
[22] FORTIN G,LAFORTE J L,BEISSWENGER A.Prediction of ice shapes on NACA0012 airfoil:AIAA-2003-01-2154[R].Reston:AIAA,2003.
[23] BOURGAULT Y,HABASHI W G,BEAUGENDRE H.Development of a shallow water icing model in Fensap-Ice:AIAA-1999-0246[R].Reston:AIAA,1999.
[24] CROCE G,BEAUGENDRE H,HABASHI W G.CHT3D:FENSAP-ICE conjugate heat transfer computations with droplet impingement and runback effects:AIAA-2002-0386[R].Reston:AIAA,2002.
[25] BEAUGENDRE H,MORENCY F,HABASHI W G.FENSAP-ICE:Roughness effects on ice shape prediction:AIAA-2003-1222[R].Reston:AIAA,2003.
[26] MYERS T G.Extension to the Messinger model for aircraft icing[J].AIAA Journal,2001,39(2):211-218.
[27] HEINRICH A,ROSS R,ZUMWALT G,et al.Aircraft icing handbook:FAA Technical Report DOT/FAA/CT-88/8-1[R].Washington,D.C.:FAA,1991.
[28] BARTLETT C S.An analytical study of icing similitude for aircraft engine testing:DOT/FAA/CT-86/35 and AEDC-TR-86-26[R].Washington,D.C.:FAA,1986.
[29] BARTLETT C S.Icing scaling considerations for aircraft engine testing:AIAA-1988-0202[R].Reston:AIAA,1988.
[30] BARTLETT C S.An empirical look at tolerances in setting icing test conditions with particular application to icing similitude:DOT/FAA/CT-87/31 and AEDC-TR-87-23[R].Washington,D.C.:FAA,1988.
[31] OLESKIM M M,GREGORIO F D,ESPOSITO B,et al.The effect of altitude on icing tunnel airfoil icing simulation:DOT/FAA/AR-96/81,Ⅱ[R].Washington,D.C.:FAA,1996.
[32] ANDERSON D N.Manual of scaling methods:NASA/CR-2004-212875[R].Washington,D.C.:NASA,2004.
[33] SAEED F,SELIG M S,BRAGG M B.A hybrid airfoil design method to simulate full-scale ice accretion throughout a given C(l)-range:AIAA-1997-0054[R].Reston:AIAA,1997.
[34] BROEREN A P,BRAGG M B.Effect of residual and intercycle ice accretions on airfoil performance:DOT/FAA/AR-02/68[R].Washington,D.C.:FAA,2002.
[35] PELLICANO P.Residual and inter-cycle ice for lower-speed aircraft with pneumatic boots:AIAA-2007-1090[R].Reston:AIAA,2007.
[36] PELLICANO P.Supercooled large drop(SLD) icing and certification of Part 23 airplanes[C]//FAA 2009 Small Airplane Directorate Program Managers Meeting,2009.
[37] JONES A R,LEWIS W.Recommended values of meteorological factors to be considered in the design of aircraft ice-prevention equipment:NACA-TN-1855[R].Washington,D.C.:NACA,1949.
[38] HACKER P T,DORSCH R G.A summary of meteorological conditions associated with aircraft icing and a proposed method of selecting design criterions for ice-protection equipment:NACA-TN-2569[R].Washington,D.C.:NACA,1951.
[39] LEWIS W,BERGRUN N R.A probability analysis of the meteorological factors conductive to aircraft icing in the United States:NACA-TN-2738[R].Washington,D.C.:NACA,1952.
[40] BOWDEN D T,GENSEMER A E,SKEEN C A.Engineering summary of airframe icing technical data:FAA Technical Report ADS-4[R].Washington,D.C.:FAA,1964.
[41] GRAY V H.Correlations among ice measurements,impingement rates,icing conditions,and drag coefficients for unswept NACA 65A004 airfoil:NACA-TN-4151[R].Washington,D.C.:NACA,1958.
[42] 张杰,周磊,张洪,等.飞机结冰探测技术[J].仪器仪表学报,2006,27(12):1578-1586.ZHANG J,ZHOU L,ZHANG H,et al.Aircraft icing detection technology[J].Chinese Journal of Scientific Instrument,2006,27(12):1578-1586(in Chinese).
[43] LEE S,BRAGG M B.Effects of simulated-spanwise-ice shapes on airfoils:Experimental investigation:AIAA-1999-0092[R].Reston:AIAA,1999.
[44] LEE S,KIM H S,BRAGG M B.Investigation of factors that influence iced-airfoil aerodynamics:AIAA-2000-0099[R].Reston:AIAA,2000.
/
〈 | 〉 |