多类异构对地观测平台协同任务规划方法
收稿日期: 2015-04-02
修回日期: 2015-06-03
网络出版日期: 2015-12-04
基金资助
高分辨率对地观测系统重大专项(GFZX04060103)
Coordinated task planning method of multiple heterogeneous Earth-observation platforms
Received date: 2015-04-02
Revised date: 2015-06-03
Online published: 2015-12-04
Supported by
Major Project of High Resolution Earth Observation System(GFZX04060103)
目前,不同类型的对地观测平台之间缺乏有效的协同交互机制。这种孤立的资源管控模式难以应对多样且大量的对地观测需求。特别是在一些紧急情况下,如地震、武装冲突、洪涝灾害和森林火灾等,这种模式的弊端尤为突出。研究了多类异构观测资源,包括卫星、飞艇及无人机(UAV)的协同规划问题。首先,提出一种基于多Agent的分层协同规划框架,整合不同观测资源构成一个分布式和松耦合的对地观测系统。其次,将异构对地观测平台的协同规划问题转化为不同子规划中心间的任务分配问题。第三,针对该任务分配问题,提出一种结合禁忌列表模拟退火(SA-TL)算法,在该算法中融合了禁忌表策略,有效提高了算法的性能。仿真实验验证了多Agent协同框架的优越性和SA-TL算法的效率。
王慧林 , 伍国华 , 马满好 . 多类异构对地观测平台协同任务规划方法[J]. 航空学报, 2016 , 37(3) : 997 -1014 . DOI: 10.7527/S1000-6893.2015.0171
Currently, different Earth-observation resources are usually managed by different organization sub-planners which lack interactions and cooperation among each other. Such independent resource operations are no longer efficient to meet diverse and vast observation requests, especially in emergencies, such as earthquakes, flooding and forest fire disasters. This paper addresses the issue of the coordinated planning of heterogeneous observation platforms, including satellite, airship and unmanned aerial vehicle(UAV). First, an agent-based coordinated planning architecture is proposed to integrate heterogeneous observation resources into a distributed and loosely-coupled earth-observation system. Second, the coordinated task planning problem is transformed into a problem of the task assignment among sub-planners. Third, a simulated annealing algorithm combined with a tabu list(SA-TL) is proposed to solve the task assignment problem. SA-TL is integrated with a tabu-list strategy, which improves the performance efficiently. Experiments and comparative studies demonstrate the superiority of agent-based architecture and the efficiency of SA-TL.
Key words: coordinated planning; agents; Earth-observation system; satellite; airship; UAV
[1] GABREL V. Strengthened 0-1 linear formulation for the daily satellite mission planning[J]. Journal of Combinatorial Optimization, 2006, 11(4):341-346.
[2] FRANK J, JÓNSSON A, MORRIS R, et al. Planning and scheduling for fleets of earth observing satellites[C]//Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, Automation and Space, 2000:1-8.
[3] VERFAILLIE G, LEMAITRE M, SCHIEX T. Russian doll search for solving constraint optimization problems[C]//Proceedings of the National Conference on Artificial Intelligence, 1996:181-187.
[4] GABREL V, VANDERPOOTEN D. Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite[J]. European Journal of Operational Research, 2002, 139(3):533-542.
[5] 伍国华, 马满好, 王慧林, 等. 基于任务聚类的多星观测调度方法[J]. 航空学报, 2011, 32(7):1275-1282. WU G H, MA M H, WANG H L, et al. Multi-satellite observati on scheduling based on task clustering[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1275-1282(in Chinese).
[6] BIANCHESSI N, CORDEAU J F, DESROSIERS J. A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites[J]. European Journal of Operational Research, 2007, 177(2):750-762.
[7] MANSOUR M A A, DESSOUKY M M. A genetic algorithm approach for solving the daily photograph selection problem of the SPOT5 satellite[J]. Computers & Industrial Engineering, 2010, 58(3):509-520.
[8] WU G H, LIU J, MA M H, et al. A two-phase scheduling method with the consideration of task clustering for earth observing satellites[J]. Computers & Operations Research, 2013, 40(7):1884-1894.
[9] WU G H, MA M H, ZHU J H, et al. Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks[J]. Journal of Systems Engineering and Electronics, 2012, 23(4):293-303.
[10] MATTHEW H. A method for estimating range requirements of tactical reconnaissance UAVs[C]//AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles. Reston:AIAA, 2002:120-124.
[11] BROWN D T. Routing unmanned aerial vehicles while considering general restricted operating zones:AFIT/GOR/ENS/01M-04[R]. Wright-Patterson:Air Force Institution of Technology, 2001.
[12] TIAN J, SHEN L, ZHENG Y. Cooperative design, visualization, and engineering[M].Berlin:Springer Berlin Heidelberg, 2006:99-106.
[13] 苏菲, 陈岩, 沈林成. 基于蚁群算法的无人机协同多任务分配[J]. 航空学报, 2008, 29(S1):184-191. SU F, CHEN Y, SHEN L C. UAV cooperative multi-task assignment based on ant colony algorithm[J] Acta Aeronautica et Astronautica Sinica, 2008, 29(S1):184-191(in Chinese).
[14] SUJIT P, JOEL G, RANDY B. Multiple UAV task allocation using particle swarm optimization[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008:1-9.
[15] 贺川, 邱涤珊, 许光, 等. 面向对地成像观测任务的高空飞艇应急调度[J]. 航空学报, 2012, 33(11):2082-2092. HE C, QIU D S, XU G, et al. Emergency scheduling of earth-observing imaging tasks on high-altitude airships[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2082-2092(in Chinese).
[16] LI Z M, HE C, QIU D S, et al. Imaging tasks scheduling for high-altitude airship in emergency condition based on energy-aware strategy[J]. The Scientific World Journal, 2013:1-11.[2015-3-25]. http://dx.doi.org/10.1155/2013/242836.
[17] MANDL D. Experimenting with sensor webs using earth observing 1[C]//Proceedings of 2004 IEEE Aerospace Conference. Piscataway NJ:IEEE Press, 2004, 1:176-183.
[18] SHERWOOD R, CHIEN S, CASTANO R, et al. Autonomous planning and scheduling on the Tech-Sat 21 mission[J]. Lecture Notes in Computer Science, 2002, 2557:213-224.
[19] TIAN X, BAR-SHALOM Y, CHEN G, et al. A unified cooperative control architecture for UAV missions[C]//Proceedings of SPIE 8392, Signal Processing, Sensor Fusion, and Target Recognition XXI, 2012:1-9.
[20] SHERWOOD R, CHIEN S, TRAN D, et al. Autonomous science agents and sensor webs:EO-1 and beyond[C]//Proceedings of the 2006 IEEE Aerospace Conference. Piscataway NJ:IEEE Press, 2006:1-10.
[21] CHIEN S, SHERWOOD R, TRAN D, et al. Autonomous science on the EO-1 mission[C]//Proceedings of the 2005 International Symposium on Artificial Intelligence Robotics and Automation in Space(i-SAIRAS), 2003:1-6.
[22] CHIEN S, SHERWOOD R, BURL M, et al. The Techsat-21 autonomous sciencecraft constellation demonstration[C]//Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2001:1-9.
[23] HEROLD T M. Asynchronous, distributed optimization for the coordinated planning of air and space assets[D]. Massachusetts:Operations Research Center, 2010.
[24] WEI M, CHEN G, BLASCH E, et al. Game theoretic multiple mobile sensor management under adversarial environments[C]//200811th International Conference on Information Fusion, 2008:1-8.
[25] CHEN G, BLASCH E, SHEN D, et al. Services oriented architecture(SOA)-based persistent ISR simulation system[C]//Proceedings of SPIE 7694, Ground/Air Multi-Sensor Interoperability, Integration, and Networking for Persistent ISR, 2010:1-11.
[26] HORLING B, LESSER V. A survey of multi-agent organizational paradigms[J]. The Knowledge Engineering Review, 2004, 19(4):281-316.
[27] SHEN W, HAO Q, YOON H J, et al. Applications of agent-based systems in intelligent manu-facturing:An updated review[J]. Advanced Engineering Informatics, 2006, 20:415-431.
[28] OUELHADJ D, PETROVIC S. A survey of dynamic scheduling in manufacturing systems[J]. Journal of Scheduling, 2009, 12(4):417-431.
[29] LEITÃO P. Agent-based distributed manufacturing control:A state-of-the-art survey[J]. Engineering Applications of Artificial Intelligence, 2009, 22(7):979-991.
[30] EL-BOURI A, AZIZI N, ZOLFAGHARI S. A comparative study of a new heuristic based on adaptive memory programming and simulated annealing:The case of job shop scheduling[J]. European Journal of Operational Research, 2007, 177(3):1894-1910.
[31] HE C, QIU D S, LIU J. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm[J]. The Scientific World Journal, 2012:1-12.[2015-3-25]. http://dx.doi.org/10.1100/2012/548250.
/
〈 | 〉 |