薄壁钛管剪应力本构参数识别方法
收稿日期: 2015-09-28
修回日期: 2015-10-20
网络出版日期: 2015-11-25
基金资助
国家自然科学基金(51305415)
Identification method of shear stress constitutive parameters of Ti-alloy thin-walled tube
Received date: 2015-09-28
Revised date: 2015-10-20
Online published: 2015-11-25
Supported by
National Natural Science Foundation of China (51305415)
不同温度下的薄壁钛管剪应力本构参数识别,是研究薄壁钛管差温剪切弯曲过程管材塑性变形行为迫切需要解决的关键问题。提出了一种管材剪切测试的方法。将不同温度下薄壁钛管等温剪切测试、剪切测试过程模拟有限元模型、以及基于距离函数的响应面模型相结合,提出了薄壁钛管不同温度下剪应力本构参数逆向识别方法。采用该方法,识别了TA2薄壁钛管剪应力本构参数。同时建立了TA2薄壁钛管差温剪切弯曲过程模拟3维弹塑性热力耦合有限元模型。分别采用剪应力本构参数和单拉应力本构参数模拟弯管实验过程,评估了有限元模型的可靠性。结果表明:对于剪应力本构参数,温度越高,管材的K值和n值将减小,m值呈现波动的趋势。与单拉应力本构参数相比,剪应力本构参数对温度的变化更敏感,且剪应力本构参数值较小。与单拉应力本构参数相比,使用剪应力本构参数的有限元模型精度较高,模拟精度最大提高了60%。
闫晶 , 吴为 . 薄壁钛管剪应力本构参数识别方法[J]. 航空学报, 2016 , 37(9) : 2884 -2894 . DOI: 10.7527/S1000-6893.2015.0289
The identification of shear stress constitutive parameters (SSCPs) of Ti-alloy thin-walled tubes (TATTs) at different temperature levels (DTLs) is a key problem for the research of plastic deformation behavior in these tube shear bending processes under differential temperature fields constraints (DTFCs). A tube shear test method is presented. The TATTs isothermal shear test processes under the DTLs, the finite element (FE) models for simulating these test processes and the response surface models based on distance functions have been combined to present a reverse method for identifying these SSCPs of the TATTs under the DTLs. Then, this method is used for identifying the SSCPs of TA2 TATTs. A 3D coupled thermal-mechanical elastic-plastic FE model for simulating these shear bending processes under DTFCs of the TA2 TATTs is established. An experimental bending process is simulated by this FE model using the SSCPs and the uniaixal tension stress constitutive parameters (UTSCPs) respectively, and the reliability of this FE model is estimated. The results reveal that for SSCPs, the larger the temperature, the smaller the values of K and n; the value of m fluctuates;the effects of temperature on the SSCPs are larger than the UTSCPs and the values of the SSCPs are smaller. The computational precision level of the FE model using the SSCPs is larger than the UTSCPs by 60%.
[1] YANG H, LI H, ZHANG Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1): 1-12.
[2] SONG F F, YANG H, LI H, et al. Springback prediction of thick-walled high-strength titanium tube bending[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1336-1345.
[3] JIANG Z Q, ZHAN M, YANG H, et al. Deformation behavior of medium strength TA18 high-pressure tubes during NC bending with different bending radii[J]. Chinese Journal of Aeronautics, 2011, 24(5): 57-64.
[4] TIAN S, LIU Y L, YANG H. Effects of geometrical parameters on wrinkling of thin-walled rectangular aluminum alloy wave-guide tubes in rotary-draw bending[J]. Chinese Journal of Aeronautics, 2013, 26(1): 242-248.
[5] YAN J, YANG H, ZHAN M, et al. Forming characteristics of Al-alloy large-diameter thin-walled tubes in NC-bending under axial compressive loads[J]. Chinese Journal of Aeronautics, 2010, 23(4): 461-469.
[6] ZENG Y S, LI Z Q. Experimental research on the tube push-bending process[J]. Journal of Materials Processing Technology, 2002, 122(2-3): 237-240.
[7] ZHANG Z Y, YANG H, LI H, et al. Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube[J]. Materials Science & Engineering A, 2013, 569: 96-105.
[8] TAO Z J, YANG H, LI H, et al. Quasi-static tensile behavior of large-diameter thin-walled Ti-6Al-4V tubes at elevated temperature[J]. Chinese Journal of Aeronautics, 2016, 29(2): 542-553.
[9] ZHAN M, HUANG T, YANG H. Variation of contractile strain ratio of Ti-3Al-2.5V tubes and its effects in tubes numerical control bending process[J]. Journal of Materials Processing Technology, 2015, 217: 165-183.
[10] CARBONNIERE J, THUILLIER S, SABOURIN F, et al. Comparison of the work hardening of metallic sheets in bending-unbending and simple shear[J]. International Journal of Mechanical Sciences, 2009, 51(2): 122-130.
[11] AN Y G, VEGTER H, HEIJNE J. Development of simple shear test for the measurement of work hardening[J]. Journal of Materials Processing Technology, 2009, 209(9): 4248-4254.
[12] CAO J, LEE W, CHENG H S, et al. Experimental and numerical investigation of combined isotropic-kinematic hardening behavior of sheet metals[J]. International Journal of Plasticity, 2009, 25(5): 942-972.
[13] YIN Q, SOYARSLAN C, GUNER A, et al. A cyclic twin bridge shear test for the identification of kinematic hardening parameters[J]. International Journal of Mechanical Sciences, 2012, 59(1): 31-43.
[14] YIN Q, ZILLMANN B, SUTTTNER S, et al. An experimental and numerical investigation of different shear test configurations for sheet metal characterization[J]. International Journal of Solids and Structures, 2014, 51(5): 1066-1074.
[15] MERKLEIN M, BIASUTTI M. Forward and reverse simple shear test experiments for material modeling in forming simulations[C]//International Conference on Technology of Plasticity. Aachen: Steel Research International, 2011: 702-707.
[16] G'SELL C, BONI S, SHRIVASTAVA S. Application of the plane simple shear test for determination of the plastic behaviour of solid polymers at large strains[J]. Journal Materials Science, 1983, 18(3): 903-918.
[17] MIYAUCHI K. A proposal of a planar simple shear test in sheet metals[J]. Science Paper for Institute of Physical Chemistry Research, 1984, 78(3): 27-40.
[18] ASTM International. ASTM B831-05 Standard test method for shear testing of thin aluminum alloy products[S]. New York: ASTM, 2005: 1-4.
[19] FRESNEL H, GROLLEAU V, LONGE'RE P, et al. Characterization of the shear behaviour of a thin-walled tubular material[J]. Thin-Walled Structures, 2009, 47(3): 295-303.
[20] ASPENBERG D, LARSSON R, NILSSON L. An evaluation of the statistics of steel material model parameters[J]. Journal of Materials Processing Technology, 2012, 212(6): 1288-1297.
[21] 孙志超, 杨合, 蔡旺, 等. 一种确定管材塑性本构关系的反算法[J]. 重型机械, 2000(3): 43-46. SUN Z C, YANG H, CAI W, et al. A reversion calculation method for determining the constitutive stress strain relationship of tubes[J]. Heavy Machinery, 2000(3): 43-46 (in Chinese).
[22] HARTH T, SCHWAN S, LEHN J, et al. Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments[J]. International Journal of Plasticity, 2004, 20(8-9): 1403-1440.
[23] 闫晶, 杨合, 詹梅, 等. 一种确定管材本构参数的新方法及其应用[J]. 材料科学与工艺, 2009, 17(3): 297-300. YAN J, YANG H, ZHAN M, et al. A new method to determine plastic constitutive parameters of tube and its applications[J]. Materials Science & Technology, 2009, 17(3): 297-300 (in Chinese).
[24] WEI D L, ZHEN Z S, CHEN J. Optimization and tolerance prediction of sheet metal forming process using response surface model[J]. Computational Materials Science, 2009, 42(2): 228-233.
[25] WANG H, LI G Y, ZHONG Z H. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 77-88.
[26] XUE X, LIAO J, VINCZE G, et al. Modelling of mandrel rotary draw bending for accurate twist springback prediction of an asymmetric thin-walled tube[J]. Journal of Materials Processing Technology, 2015, 216: 405-417.
[27] 理有亲, 林兆荣. 钛板冲压成形技术[M]. 北京: 国防工业出版社, 1986: 185-186. LI Y Q, LIN Z R. Ti-alloy sheet metal forming technology[M]. Beijing: Defense Industry Press, 1986: 185-186 (in Chinese).
[28] 《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 2001: 10-20. Editor Commitee of China Aeronautical Materials Handbook. China aeronautical materials handbook[M]. Beijing: China Standard Press, 2001: 10-20 (in Chinese).
[29] 任露泉. 回归设计及其优化[M]. 北京: 科学出版社, 2009: 39-46. REN L Q. Regression design and its optimization[M]. Beijing: Science Press, 2009: 39-46 (in Chinese).
[30] Hibbit Karlson and Sorensen Inc.. Abaqus 6.9 documentation[M]. Washington, D. C.: Hibbit Karlson and Sorensen Inc., 2009: 180-200.
[31] 赵镇南. 传热学[M]. 北京: 高等教育出版社, 2002: 493-508. ZHAO Z N. Heat transfer[M]. Beijing: Higher Education Press, 2002: 493-508 (in Chinese).
[32] 马高山, 万敏, 吴向东. 5A90铝锂合金热态下本构关系研究[J]. 塑性工程学报, 2007, 14(3): 68-71. MA G S, WAN M, WU X D. Research on the constitutive relationship of 5A90 aluminum—lithium alloy at hot forming temperature[J]. Journal of plasticity engineering, 2007, 14(3): 68-71 (in Chinese).
/
〈 | 〉 |